Spaces:
Running
Running
import gradio as gr | |
import torch | |
from transformers import AutoFeatureExtractor, AutoModelForImageClassification, pipeline | |
import os | |
from numpy import exp | |
import pandas as pd | |
from PIL import Image | |
import urllib.request | |
import uuid | |
uid = uuid.uuid4() | |
# Reordered models as requested | |
models = [ | |
"umm-maybe/AI-image-detector", | |
"Organika/sdxl-detector", | |
"cmckinle/sdxl-flux-detector", | |
] | |
pipe0 = pipeline("image-classification", f"{models[0]}") | |
pipe1 = pipeline("image-classification", f"{models[1]}") | |
pipe2 = pipeline("image-classification", f"{models[2]}") | |
fin_sum = [] | |
def softmax(vector): | |
e = exp(vector - vector.max()) # for numerical stability | |
return e / e.sum() | |
# Image classification function for Model 0 | |
def image_classifier0(image): | |
fin_sum.clear() # Clear previous results | |
labels = ["AI", "Real"] | |
outputs = pipe0(image) | |
scores = [output['score'] for output in outputs] | |
soft_scores = softmax(scores) # Ensure consistency with softmax | |
results = {labels[i]: float(soft_scores[i]) for i in range(len(labels))} | |
fin_sum.append(results) | |
return results | |
# Image classification function for Model 1 | |
def image_classifier1(image): | |
fin_sum.clear() # Clear previous results | |
labels = ["AI", "Real"] | |
outputs = pipe1(image) | |
scores = [output['score'] for output in outputs] | |
soft_scores = softmax(scores) # Ensure consistency with softmax | |
results = {labels[i]: float(soft_scores[i]) for i in range(len(labels))} | |
fin_sum.append(results) | |
return results | |
# Image classification function for Model 2 | |
def image_classifier2(image): | |
fin_sum.clear() # Clear previous results | |
labels = ["AI", "Real"] | |
outputs = pipe2(image) | |
scores = [output['score'] for output in outputs] | |
soft_scores = softmax(scores) # Ensure consistency with softmax | |
results = {labels[i]: float(soft_scores[i]) for i in range(len(labels))} | |
fin_sum.append(results) | |
return results | |
# AI or Not function for Model 0 | |
def aiornot0(image): | |
labels = ["AI", "Real"] | |
mod = models[0] | |
feature_extractor0 = AutoFeatureExtractor.from_pretrained(mod) | |
model0 = AutoModelForImageClassification.from_pretrained(mod) | |
input = feature_extractor0(image, return_tensors="pt") | |
with torch.no_grad(): | |
outputs = model0(**input) | |
logits = outputs.logits | |
probability = softmax(logits) # Apply softmax on logits | |
px = pd.DataFrame(probability.numpy()) | |
prediction = logits.argmax(-1).item() | |
label = labels[prediction] | |
html_out = f""" | |
<h1>This image is likely: {label}</h1><br><h3> | |
Probabilities:<br> | |
Real: {float(px[1][0])}<br> | |
AI: {float(px[0][0])}""" | |
results = { | |
"Real": float(px[1][0]), | |
"AI": float(px[0][0]) | |
} | |
fin_sum.append(results) | |
return gr.HTML.update(html_out), results | |
# AI or Not function for Model 1 | |
def aiornot1(image): | |
labels = ["AI", "Real"] | |
mod = models[1] | |
feature_extractor1 = AutoFeatureExtractor.from_pretrained(mod) | |
model1 = AutoModelForImageClassification.from_pretrained(mod) | |
input = feature_extractor1(image, return_tensors="pt") | |
with torch.no_grad(): | |
outputs = model1(**input) | |
logits = outputs.logits | |
probability = softmax(logits) # Apply softmax on logits | |
px = pd.DataFrame(probability.numpy()) | |
prediction = logits.argmax(-1).item() | |
label = labels[prediction] | |
html_out = f""" | |
<h1>This image is likely: {label}</h1><br><h3> | |
Probabilities:<br> | |
Real: {float(px[1][0])}<br> | |
AI: {float(px[0][0])}""" | |
results = { | |
"Real": float(px[1][0]), | |
"AI": float(px[0][0]) | |
} | |
fin_sum.append(results) | |
return gr.HTML.update(html_out), results | |
# AI or Not function for Model 2 | |
def aiornot2(image): | |
labels = ["AI", "Real"] | |
mod = models[2] | |
feature_extractor2 = AutoFeatureExtractor.from_pretrained(mod) | |
model2 = AutoModelForImageClassification.from_pretrained(mod) | |
input = feature_extractor2(image, return_tensors="pt") | |
with torch.no_grad(): | |
outputs = model2(**input) | |
logits = outputs.logits | |
probability = softmax(logits) # Apply softmax on logits | |
px = pd.DataFrame(probability.numpy()) | |
prediction = logits.argmax(-1).item() | |
label = labels[prediction] | |
html_out = f""" | |
<h1>This image is likely: {label}</h1><br><h3> | |
Probabilities:<br> | |
Real: {float(px[1][0])}<br> | |
AI: {float(px[0][0])}""" | |
results = { | |
"Real": float(px[1][0]), | |
"AI": float(px[0][0]) | |
} | |
fin_sum.append(results) | |
return gr.HTML.update(html_out), results | |
# Load URL and return image | |
def load_url(url): | |
try: | |
urllib.request.urlretrieve(f'{url}', f"{uid}tmp_im.png") | |
image = Image.open(f"{uid}tmp_im.png") | |
mes = "Image Loaded" | |
except Exception as e: | |
image = None | |
mes = f"Image not Found<br>Error: {e}" | |
return image, mes | |
# Calculate final probabilities | |
def tot_prob(): | |
try: | |
fin_out = sum([result["Real"] for result in fin_sum]) / len(fin_sum) | |
fin_sub = 1 - fin_out | |
out = { | |
"Real": f"{fin_out}", | |
"AI": f"{fin_sub}" | |
} | |
return out | |
except Exception as e: | |
print(e) | |
return None | |
# Clear the fin_sum list | |
def fin_clear(): | |
fin_sum.clear() | |
return None | |
# Update image | |
def upd(image): | |
rand_im = uuid.uuid4() | |
image.save(f"{rand_im}-vid_tmp_proc.png") | |
out = Image.open(f"{rand_im}-vid_tmp_proc.png") | |
return out | |
with gr.Blocks() as app: | |
gr.Markdown("""<center><h1>AI Image Detector<br><h4>(Test Demo - accuracy varies by model)""") | |
with gr.Column(): | |
inp = gr.Image(type='pil') | |
in_url = gr.Textbox(label="Image URL") | |
with gr.Row(): | |
load_btn = gr.Button("Load URL") | |
btn = gr.Button("Detect AI") | |
mes = gr.HTML("""""") | |
with gr.Group(): | |
with gr.Row(): | |
fin = gr.Label(label="Final Probability", visible=False) | |
with gr.Row(): | |
with gr.Box(): | |
lab0 = gr.HTML(f"""<b>Testing on Original Model: <a href='https://huggingface.co/{models[0]}'>{models[0]}</a></b>""") | |
nun0 = gr.HTML("""""") | |
with gr.Box(): | |
lab1 = gr.HTML(f"""<b>Testing on SDXL Fine Tuned Model: <a href='https://huggingface.co/{models[1]}'>{models[1]}</a></b>""") | |
nun1 = gr.HTML("""""") | |
with gr.Box(): | |
lab2 = gr.HTML(f"""<b>Testing on SDXL and Flux Fine Tuned Model: <a href='https://huggingface.co/{models[2]}'>{models[2]}</a></b>""") | |
nun2 = gr.HTML("""""") | |
with gr.Row(): | |
with gr.Box(): | |
n_out0 = gr.Label(label="Output") | |
outp0 = gr.HTML("""""") | |
with gr.Box(): | |
n_out1 = gr.Label(label="Output") | |
outp1 = gr.HTML("""""") | |
with gr.Box(): | |
n_out2 = gr.Label(label="Output") | |
outp2 = gr.HTML("""""") | |
btn.click(fin_clear, None, fin, show_progress=False) | |
load_btn.click(load_url, in_url, [inp, mes]) | |
# Use either the aiornot functions or image_classifier consistently | |
btn.click(aiornot0, [inp], [outp0, n_out0]).then(tot_prob, None, fin, show_progress=False) | |
btn.click(aiornot1, [inp], [outp1, n_out1]).then(tot_prob, None, fin, show_progress=False) | |
btn.click(aiornot2, [inp], [outp2, n_out2]).then(tot_prob, None, fin, show_progress=False) | |
app.launch(show_api=False, max_threads=24) | |