import gradio as gr import torch from transformers import AutoFeatureExtractor, AutoModelForImageClassification, pipeline import os from numpy import exp import pandas as pd from PIL import Image import urllib.request import uuid uid = uuid.uuid4() # Reordered models as requested models = [ "umm-maybe/AI-image-detector", "Organika/sdxl-detector", "cmckinle/sdxl-flux-detector", ] pipe0 = pipeline("image-classification", f"{models[0]}") pipe1 = pipeline("image-classification", f"{models[1]}") pipe2 = pipeline("image-classification", f"{models[2]}") fin_sum = [] def softmax(vector): e = exp(vector - vector.max()) # for numerical stability return e / e.sum() # Image classification function for Model 0 def image_classifier0(image): fin_sum.clear() # Clear previous results labels = ["AI", "Real"] outputs = pipe0(image) scores = [output['score'] for output in outputs] soft_scores = softmax(scores) # Ensure consistency with softmax results = {labels[i]: float(soft_scores[i]) for i in range(len(labels))} fin_sum.append(results) return results # Image classification function for Model 1 def image_classifier1(image): fin_sum.clear() # Clear previous results labels = ["AI", "Real"] outputs = pipe1(image) scores = [output['score'] for output in outputs] soft_scores = softmax(scores) # Ensure consistency with softmax results = {labels[i]: float(soft_scores[i]) for i in range(len(labels))} fin_sum.append(results) return results # Image classification function for Model 2 def image_classifier2(image): fin_sum.clear() # Clear previous results labels = ["AI", "Real"] outputs = pipe2(image) scores = [output['score'] for output in outputs] soft_scores = softmax(scores) # Ensure consistency with softmax results = {labels[i]: float(soft_scores[i]) for i in range(len(labels))} fin_sum.append(results) return results # AI or Not function for Model 0 def aiornot0(image): labels = ["AI", "Real"] mod = models[0] feature_extractor0 = AutoFeatureExtractor.from_pretrained(mod) model0 = AutoModelForImageClassification.from_pretrained(mod) input = feature_extractor0(image, return_tensors="pt") with torch.no_grad(): outputs = model0(**input) logits = outputs.logits probability = softmax(logits) # Apply softmax on logits px = pd.DataFrame(probability.numpy()) prediction = logits.argmax(-1).item() label = labels[prediction] html_out = f"""

This image is likely: {label}


Probabilities:
Real: {float(px[1][0])}
AI: {float(px[0][0])}""" results = { "Real": float(px[1][0]), "AI": float(px[0][0]) } fin_sum.append(results) return gr.HTML.update(html_out), results # AI or Not function for Model 1 def aiornot1(image): labels = ["AI", "Real"] mod = models[1] feature_extractor1 = AutoFeatureExtractor.from_pretrained(mod) model1 = AutoModelForImageClassification.from_pretrained(mod) input = feature_extractor1(image, return_tensors="pt") with torch.no_grad(): outputs = model1(**input) logits = outputs.logits probability = softmax(logits) # Apply softmax on logits px = pd.DataFrame(probability.numpy()) prediction = logits.argmax(-1).item() label = labels[prediction] html_out = f"""

This image is likely: {label}


Probabilities:
Real: {float(px[1][0])}
AI: {float(px[0][0])}""" results = { "Real": float(px[1][0]), "AI": float(px[0][0]) } fin_sum.append(results) return gr.HTML.update(html_out), results # AI or Not function for Model 2 def aiornot2(image): labels = ["AI", "Real"] mod = models[2] feature_extractor2 = AutoFeatureExtractor.from_pretrained(mod) model2 = AutoModelForImageClassification.from_pretrained(mod) input = feature_extractor2(image, return_tensors="pt") with torch.no_grad(): outputs = model2(**input) logits = outputs.logits probability = softmax(logits) # Apply softmax on logits px = pd.DataFrame(probability.numpy()) prediction = logits.argmax(-1).item() label = labels[prediction] html_out = f"""

This image is likely: {label}


Probabilities:
Real: {float(px[1][0])}
AI: {float(px[0][0])}""" results = { "Real": float(px[1][0]), "AI": float(px[0][0]) } fin_sum.append(results) return gr.HTML.update(html_out), results # Load URL and return image def load_url(url): try: urllib.request.urlretrieve(f'{url}', f"{uid}tmp_im.png") image = Image.open(f"{uid}tmp_im.png") mes = "Image Loaded" except Exception as e: image = None mes = f"Image not Found
Error: {e}" return image, mes # Calculate final probabilities def tot_prob(): try: fin_out = sum([result["Real"] for result in fin_sum]) / len(fin_sum) fin_sub = 1 - fin_out out = { "Real": f"{fin_out}", "AI": f"{fin_sub}" } return out except Exception as e: print(e) return None # Clear the fin_sum list def fin_clear(): fin_sum.clear() return None # Update image def upd(image): rand_im = uuid.uuid4() image.save(f"{rand_im}-vid_tmp_proc.png") out = Image.open(f"{rand_im}-vid_tmp_proc.png") return out with gr.Blocks() as app: gr.Markdown("""

AI Image Detector

(Test Demo - accuracy varies by model)""") with gr.Column(): inp = gr.Image(type='pil') in_url = gr.Textbox(label="Image URL") with gr.Row(): load_btn = gr.Button("Load URL") btn = gr.Button("Detect AI") mes = gr.HTML("""""") with gr.Group(): with gr.Row(): fin = gr.Label(label="Final Probability", visible=False) with gr.Row(): with gr.Box(): lab0 = gr.HTML(f"""Testing on Original Model: {models[0]}""") nun0 = gr.HTML("""""") with gr.Box(): lab1 = gr.HTML(f"""Testing on SDXL Fine Tuned Model: {models[1]}""") nun1 = gr.HTML("""""") with gr.Box(): lab2 = gr.HTML(f"""Testing on SDXL and Flux Fine Tuned Model: {models[2]}""") nun2 = gr.HTML("""""") with gr.Row(): with gr.Box(): n_out0 = gr.Label(label="Output") outp0 = gr.HTML("""""") with gr.Box(): n_out1 = gr.Label(label="Output") outp1 = gr.HTML("""""") with gr.Box(): n_out2 = gr.Label(label="Output") outp2 = gr.HTML("""""") btn.click(fin_clear, None, fin, show_progress=False) load_btn.click(load_url, in_url, [inp, mes]) # Use either the aiornot functions or image_classifier consistently btn.click(aiornot0, [inp], [outp0, n_out0]).then(tot_prob, None, fin, show_progress=False) btn.click(aiornot1, [inp], [outp1, n_out1]).then(tot_prob, None, fin, show_progress=False) btn.click(aiornot2, [inp], [outp2, n_out2]).then(tot_prob, None, fin, show_progress=False) app.launch(show_api=False, max_threads=24)