File size: 7,545 Bytes
6364b8e
 
050a6c5
 
436d80d
a870a21
06b2f35
 
 
a870a21
06b2f35
a870a21
 
d19e84e
75a5505
a870a21
d19e84e
050a6c5
 
 
 
 
a870a21
 
 
 
 
 
9cd777c
050a6c5
9cd777c
a870a21
050a6c5
9cd777c
 
 
050a6c5
 
a870a21
9cd777c
050a6c5
9cd777c
a870a21
050a6c5
9cd777c
 
 
050a6c5
 
a870a21
9cd777c
050a6c5
9cd777c
a870a21
050a6c5
9cd777c
 
 
050a6c5
 
e2346d7
9cd777c
a870a21
050a6c5
a870a21
050a6c5
 
 
5ca31bc
050a6c5
5ca31bc
a870a21
5ca31bc
050a6c5
 
a870a21
5ca31bc
 
a870a21
 
 
 
 
 
 
 
050a6c5
a870a21
 
9cd777c
a870a21
050a6c5
a870a21
050a6c5
 
 
 
 
 
a870a21
050a6c5
 
 
a870a21
050a6c5
 
a870a21
 
 
 
 
 
 
 
050a6c5
a870a21
 
9cd777c
a870a21
 
 
050a6c5
 
 
 
 
 
a870a21
050a6c5
 
 
a870a21
050a6c5
 
a870a21
 
 
 
 
 
 
 
050a6c5
a870a21
06b2f35
9cd777c
06b2f35
 
a870a21
06b2f35
 
 
a870a21
 
 
050a6c5
9cd777c
050a6c5
 
a870a21
 
 
 
 
050a6c5
 
 
a870a21
050a6c5
a870a21
9cd777c
050a6c5
 
 
5ca31bc
9cd777c
050a6c5
 
 
 
a870a21
5ca31bc
 
050a6c5
5ca31bc
 
a870a21
5ca31bc
a870a21
5ca31bc
050a6c5
a870a21
 
050a6c5
a870a21
050a6c5
 
a870a21
050a6c5
 
a870a21
050a6c5
 
a870a21
050a6c5
5ca31bc
050a6c5
a870a21
050a6c5
 
a870a21
050a6c5
 
a870a21
 
050a6c5
a870a21
 
 
9cd777c
a870a21
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import gradio as gr
import torch
from transformers import AutoFeatureExtractor, AutoModelForImageClassification, pipeline
import os 
from numpy import exp
import pandas as pd
from PIL import Image
import urllib.request 
import uuid
uid = uuid.uuid4()

# Reordered models as requested
models = [
    "umm-maybe/AI-image-detector",
    "Organika/sdxl-detector",
    "cmckinle/sdxl-flux-detector",
]

pipe0 = pipeline("image-classification", f"{models[0]}")
pipe1 = pipeline("image-classification", f"{models[1]}")
pipe2 = pipeline("image-classification", f"{models[2]}")

fin_sum = []

def softmax(vector):
    e = exp(vector - vector.max())  # for numerical stability
    return e / e.sum()

# Image classification function for Model 0
def image_classifier0(image):
    fin_sum.clear()  # Clear previous results
    labels = ["AI", "Real"]
    outputs = pipe0(image)
    scores = [output['score'] for output in outputs]
    soft_scores = softmax(scores)  # Ensure consistency with softmax
    results = {labels[i]: float(soft_scores[i]) for i in range(len(labels))}
    fin_sum.append(results)
    return results

# Image classification function for Model 1
def image_classifier1(image):
    fin_sum.clear()  # Clear previous results
    labels = ["AI", "Real"]
    outputs = pipe1(image)
    scores = [output['score'] for output in outputs]
    soft_scores = softmax(scores)  # Ensure consistency with softmax
    results = {labels[i]: float(soft_scores[i]) for i in range(len(labels))}
    fin_sum.append(results)
    return results

# Image classification function for Model 2
def image_classifier2(image):
    fin_sum.clear()  # Clear previous results
    labels = ["AI", "Real"]
    outputs = pipe2(image)
    scores = [output['score'] for output in outputs]
    soft_scores = softmax(scores)  # Ensure consistency with softmax
    results = {labels[i]: float(soft_scores[i]) for i in range(len(labels))}
    fin_sum.append(results)
    return results

# AI or Not function for Model 0
def aiornot0(image):
    labels = ["AI", "Real"]
    mod = models[0]
    feature_extractor0 = AutoFeatureExtractor.from_pretrained(mod)
    model0 = AutoModelForImageClassification.from_pretrained(mod)
    input = feature_extractor0(image, return_tensors="pt")
    with torch.no_grad():
        outputs = model0(**input)
        logits = outputs.logits
        probability = softmax(logits)  # Apply softmax on logits
        px = pd.DataFrame(probability.numpy())
    prediction = logits.argmax(-1).item()
    label = labels[prediction]

    html_out = f"""
    <h1>This image is likely: {label}</h1><br><h3>
    Probabilities:<br>
    Real: {float(px[1][0])}<br>
    AI: {float(px[0][0])}"""
    
    results = {
        "Real": float(px[1][0]),
        "AI": float(px[0][0])
    }
    fin_sum.append(results)
    return gr.HTML.update(html_out), results

# AI or Not function for Model 1
def aiornot1(image):
    labels = ["AI", "Real"]
    mod = models[1]
    feature_extractor1 = AutoFeatureExtractor.from_pretrained(mod)
    model1 = AutoModelForImageClassification.from_pretrained(mod)
    input = feature_extractor1(image, return_tensors="pt")
    with torch.no_grad():
        outputs = model1(**input)
        logits = outputs.logits
        probability = softmax(logits)  # Apply softmax on logits
        px = pd.DataFrame(probability.numpy())
    prediction = logits.argmax(-1).item()
    label = labels[prediction]

    html_out = f"""
    <h1>This image is likely: {label}</h1><br><h3>
    Probabilities:<br>
    Real: {float(px[1][0])}<br>
    AI: {float(px[0][0])}"""
    
    results = {
        "Real": float(px[1][0]),
        "AI": float(px[0][0])
    }
    fin_sum.append(results)
    return gr.HTML.update(html_out), results

# AI or Not function for Model 2
def aiornot2(image):
    labels = ["AI", "Real"]
    mod = models[2]
    feature_extractor2 = AutoFeatureExtractor.from_pretrained(mod)
    model2 = AutoModelForImageClassification.from_pretrained(mod)
    input = feature_extractor2(image, return_tensors="pt")
    with torch.no_grad():
        outputs = model2(**input)
        logits = outputs.logits
        probability = softmax(logits)  # Apply softmax on logits
        px = pd.DataFrame(probability.numpy())
    prediction = logits.argmax(-1).item()
    label = labels[prediction]

    html_out = f"""
    <h1>This image is likely: {label}</h1><br><h3>
    Probabilities:<br>
    Real: {float(px[1][0])}<br>
    AI: {float(px[0][0])}"""
    
    results = {
        "Real": float(px[1][0]),
        "AI": float(px[0][0])
    }
    fin_sum.append(results)
    return gr.HTML.update(html_out), results

# Load URL and return image
def load_url(url):
    try:
        urllib.request.urlretrieve(f'{url}', f"{uid}tmp_im.png")
        image = Image.open(f"{uid}tmp_im.png")
        mes = "Image Loaded"
    except Exception as e:
        image = None
        mes = f"Image not Found<br>Error: {e}"
    return image, mes

# Calculate final probabilities
def tot_prob():
    try:
        fin_out = sum([result["Real"] for result in fin_sum]) / len(fin_sum)
        fin_sub = 1 - fin_out
        out = {
            "Real": f"{fin_out}",
            "AI": f"{fin_sub}"
        }
        return out
    except Exception as e:
        print(e)
        return None

# Clear the fin_sum list
def fin_clear():
    fin_sum.clear()
    return None

# Update image
def upd(image):
    rand_im = uuid.uuid4()
    image.save(f"{rand_im}-vid_tmp_proc.png")
    out = Image.open(f"{rand_im}-vid_tmp_proc.png")
    return out

with gr.Blocks() as app:
    gr.Markdown("""<center><h1>AI Image Detector<br><h4>(Test Demo - accuracy varies by model)""")
    with gr.Column():
        inp = gr.Image(type='pil')
        in_url = gr.Textbox(label="Image URL")
        with gr.Row():
            load_btn = gr.Button("Load URL")
            btn = gr.Button("Detect AI")
        mes = gr.HTML("""""")

    with gr.Group():
        with gr.Row():
            fin = gr.Label(label="Final Probability", visible=False)
        with gr.Row():
            with gr.Box():
                lab0 = gr.HTML(f"""<b>Testing on Original Model: <a href='https://huggingface.co/{models[0]}'>{models[0]}</a></b>""")
                nun0 = gr.HTML("""""")
            with gr.Box():
                lab1 = gr.HTML(f"""<b>Testing on SDXL Fine Tuned Model: <a href='https://huggingface.co/{models[1]}'>{models[1]}</a></b>""")
                nun1 = gr.HTML("""""")
            with gr.Box():
                lab2 = gr.HTML(f"""<b>Testing on SDXL and Flux Fine Tuned Model: <a href='https://huggingface.co/{models[2]}'>{models[2]}</a></b>""")
                nun2 = gr.HTML("""""")
        with gr.Row():
            with gr.Box():
                n_out0 = gr.Label(label="Output")
                outp0 = gr.HTML("""""")
            with gr.Box():
                n_out1 = gr.Label(label="Output")
                outp1 = gr.HTML("""""")
            with gr.Box():
                n_out2 = gr.Label(label="Output")
                outp2 = gr.HTML("""""")

    btn.click(fin_clear, None, fin, show_progress=False)
    load_btn.click(load_url, in_url, [inp, mes])

    # Use either the aiornot functions or image_classifier consistently
    btn.click(aiornot0, [inp], [outp0, n_out0]).then(tot_prob, None, fin, show_progress=False)
    btn.click(aiornot1, [inp], [outp1, n_out1]).then(tot_prob, None, fin, show_progress=False)
    btn.click(aiornot2, [inp], [outp2, n_out2]).then(tot_prob, None, fin, show_progress=False)

app.launch(show_api=False, max_threads=24)