|
import gradio as gr |
|
import spaces |
|
|
|
import torch |
|
import os |
|
from glob import glob |
|
from pathlib import Path |
|
from typing import Optional |
|
|
|
from diffusers import StableVideoDiffusionPipeline |
|
from diffusers.utils import load_image, export_to_video |
|
from PIL import Image |
|
|
|
import uuid |
|
import random |
|
from huggingface_hub import hf_hub_download |
|
|
|
|
|
|
|
from moviepy.editor import VideoFileClip, concatenate_videoclips |
|
|
|
|
|
|
|
pipe = StableVideoDiffusionPipeline.from_pretrained( |
|
"stabilityai/stable-video-diffusion-img2vid-xt", torch_dtype=torch.float16, variant="fp16" |
|
) |
|
pipe.to("cuda") |
|
|
|
|
|
|
|
max_64_bit_int = 2**63 - 1 |
|
|
|
def resize_image(image, output_size=(1024, 576)): |
|
""" |
|
Resizes/crops the image to match a target resolution without |
|
distorting aspect ratio. |
|
""" |
|
target_aspect = output_size[0] / output_size[1] |
|
image_aspect = image.width / image.height |
|
|
|
if image_aspect > target_aspect: |
|
new_height = output_size[1] |
|
new_width = int(new_height * image_aspect) |
|
resized_image = image.resize((new_width, new_height), Image.LANCZOS) |
|
left = (new_width - output_size[0]) / 2 |
|
top = 0 |
|
right = (new_width + output_size[0]) / 2 |
|
bottom = output_size[1] |
|
else: |
|
new_width = output_size[0] |
|
new_height = int(new_width / image_aspect) |
|
resized_image = image.resize((new_width, new_height), Image.LANCZOS) |
|
left = 0 |
|
top = (new_height - output_size[1]) / 2 |
|
right = output_size[0] |
|
bottom = (new_height + output_size[1]) / 2 |
|
|
|
cropped_image = resized_image.crop((left, top, right, bottom)) |
|
return cropped_image |
|
|
|
|
|
def combine_videos(video_paths, output_path="outputs/final_long_video.mp4"): |
|
""" |
|
Concatenate a list of MP4 videos into one MP4. |
|
""" |
|
clips = [VideoFileClip(vp) for vp in video_paths] |
|
final_clip = concatenate_videoclips(clips, method="compose") |
|
final_clip.write_videofile(output_path, codec="libx264", fps=clips[0].fps, audio=False) |
|
return output_path |
|
|
|
|
|
|
|
def generate_snippet( |
|
init_image: Image, |
|
seed: int, |
|
motion_bucket_id: int, |
|
fps_id: int, |
|
decoding_t: int = 3, |
|
device: str = "cuda", |
|
output_folder: str = "outputs" |
|
): |
|
""" |
|
Generate a short snippet from `init_image` using the pipeline. |
|
Returns: (frames, video_path) |
|
""" |
|
generator = torch.manual_seed(seed) |
|
os.makedirs(output_folder, exist_ok=True) |
|
base_count = len(glob(os.path.join(output_folder, "*.mp4"))) |
|
video_path = os.path.join(output_folder, f"{base_count:06d}.mp4") |
|
|
|
|
|
result = pipe( |
|
init_image, |
|
decode_chunk_size=decoding_t, |
|
generator=generator, |
|
motion_bucket_id=motion_bucket_id, |
|
noise_aug_strength=0.1, |
|
num_frames=25 |
|
) |
|
frames = result.frames[0] |
|
|
|
|
|
export_to_video(frames, video_path, fps=fps_id) |
|
|
|
return frames, video_path |
|
|
|
@spaces.GPU(duration=120) |
|
def sample_long( |
|
image: Image, |
|
seed: Optional[int] = 42, |
|
randomize_seed: bool = True, |
|
motion_bucket_id: int = 127, |
|
fps_id: int = 6, |
|
cond_aug: float = 0.02, |
|
decoding_t: int = 3, |
|
device: str = "cuda", |
|
output_folder: str = "outputs", |
|
progress=gr.Progress(track_tqdm=True) |
|
): |
|
""" |
|
Generate 5 snippets in a row. Each new snippet starts from the last frame of the previous snippet. |
|
Return the path to the final, concatenated MP4. |
|
""" |
|
if image.mode == "RGBA": |
|
image = image.convert("RGB") |
|
|
|
if randomize_seed: |
|
seed = random.randint(0, max_64_bit_int) |
|
torch.manual_seed(seed) |
|
|
|
snippet_paths = [] |
|
current_image = image |
|
|
|
for i in range(5): |
|
frames, snippet_path = generate_snippet( |
|
init_image=current_image, |
|
seed=seed, |
|
motion_bucket_id=motion_bucket_id, |
|
fps_id=fps_id, |
|
decoding_t=decoding_t, |
|
device=device, |
|
output_folder=output_folder |
|
) |
|
snippet_paths.append(snippet_path) |
|
|
|
|
|
last_frame = frames[-1] |
|
current_image = last_frame |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
final_video_path = os.path.join(output_folder, "final_long_video.mp4") |
|
final_video_path = combine_videos(snippet_paths, output_path=final_video_path) |
|
|
|
return final_video_path, seed |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown('''# Community demo for Stable Video Diffusion - Img2Vid - XT |
|
([model](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt), |
|
[paper](https://stability.ai/research/stable-video-diffusion-scaling-latent-video-diffusion-models-to-large-datasets), |
|
[stability's ui waitlist](https://stability.ai/contact)) |
|
#### Research release ([_non-commercial_](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt/blob/main/LICENSE)): |
|
Generate a longer video by chaining together multiple short snippets. |
|
''') |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
image = gr.Image(label="Upload your image", type="pil") |
|
generate_btn = gr.Button("Generate Long Video (5 snippets)") |
|
video = gr.Video() |
|
|
|
with gr.Accordion("Advanced options", open=False): |
|
seed = gr.Slider( |
|
label="Seed", |
|
value=42, |
|
randomize=True, |
|
minimum=0, |
|
maximum=max_64_bit_int, |
|
step=1 |
|
) |
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) |
|
motion_bucket_id = gr.Slider( |
|
label="Motion bucket id", |
|
info="Controls how much motion to add/remove from the image", |
|
value=127, |
|
minimum=1, |
|
maximum=255 |
|
) |
|
fps_id = gr.Slider( |
|
label="Frames per second", |
|
info="The length of your video in seconds will be 25/fps", |
|
value=6, |
|
minimum=5, |
|
maximum=30 |
|
) |
|
|
|
|
|
image.upload(fn=resize_image, inputs=image, outputs=image, queue=False) |
|
|
|
|
|
generate_btn.click( |
|
fn=sample_long, |
|
inputs=[image, seed, randomize_seed, motion_bucket_id, fps_id], |
|
outputs=[video, seed], |
|
api_name="video" |
|
) |
|
|
|
|
|
|
|
gr.Examples( |
|
examples=[ |
|
"images/blink_meme.png", |
|
"images/confused2_meme.png", |
|
"images/disaster_meme.png", |
|
"images/distracted_meme.png", |
|
"images/hide_meme.png", |
|
"images/nazare_meme.png", |
|
"images/success_meme.png", |
|
"images/willy_meme.png", |
|
"images/wink_meme.png" |
|
], |
|
inputs=image, |
|
outputs=[video, seed], |
|
fn=sample_long, |
|
cache_examples="lazy", |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch(share=True, show_api=False) |
|
|