File size: 7,815 Bytes
b935e3d 1da8dac 45a6a13 1da8dac b56981c 1da8dac 45a6a13 1da8dac 45a6a13 1da8dac 45a6a13 f404d24 2efae84 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
import gradio as gr
import spaces
#import gradio.helpers
import torch
import os
from glob import glob
from pathlib import Path
from typing import Optional
from diffusers import StableVideoDiffusionPipeline
from diffusers.utils import load_image, export_to_video
from PIL import Image
import uuid
import random
from huggingface_hub import hf_hub_download
# NEW CODE HERE:
# If moviepy is not installed by default, you need to ensure your Space installs it (e.g. in requirements.txt).
from moviepy.editor import VideoFileClip, concatenate_videoclips
#gradio.helpers.CACHED_FOLDER = '/data/cache'
pipe = StableVideoDiffusionPipeline.from_pretrained(
"stabilityai/stable-video-diffusion-img2vid-xt", torch_dtype=torch.float16, variant="fp16"
)
pipe.to("cuda")
#pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
#pipe.vae = torch.compile(pipe.vae, mode="reduce-overhead", fullgraph=True)
max_64_bit_int = 2**63 - 1
def resize_image(image, output_size=(1024, 576)):
"""
Resizes/crops the image to match a target resolution without
distorting aspect ratio.
"""
target_aspect = output_size[0] / output_size[1]
image_aspect = image.width / image.height
if image_aspect > target_aspect:
new_height = output_size[1]
new_width = int(new_height * image_aspect)
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
left = (new_width - output_size[0]) / 2
top = 0
right = (new_width + output_size[0]) / 2
bottom = output_size[1]
else:
new_width = output_size[0]
new_height = int(new_width / image_aspect)
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
left = 0
top = (new_height - output_size[1]) / 2
right = output_size[0]
bottom = (new_height + output_size[1]) / 2
cropped_image = resized_image.crop((left, top, right, bottom))
return cropped_image
# NEW CODE HERE:
def combine_videos(video_paths, output_path="outputs/final_long_video.mp4"):
"""
Concatenate a list of MP4 videos into one MP4.
"""
clips = [VideoFileClip(vp) for vp in video_paths]
final_clip = concatenate_videoclips(clips, method="compose")
final_clip.write_videofile(output_path, codec="libx264", fps=clips[0].fps, audio=False)
return output_path
# NEW CODE HERE:
# We create a helper function that returns both the frames and the snippet path
def generate_snippet(
init_image: Image,
seed: int,
motion_bucket_id: int,
fps_id: int,
decoding_t: int = 3,
device: str = "cuda",
output_folder: str = "outputs"
):
"""
Generate a short snippet from `init_image` using the pipeline.
Returns: (frames, video_path)
"""
generator = torch.manual_seed(seed)
os.makedirs(output_folder, exist_ok=True)
base_count = len(glob(os.path.join(output_folder, "*.mp4")))
video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")
# Generate frames
result = pipe(
init_image,
decode_chunk_size=decoding_t,
generator=generator,
motion_bucket_id=motion_bucket_id,
noise_aug_strength=0.1,
num_frames=25
)
frames = result.frames[0] # a list of PIL images
# Save snippet
export_to_video(frames, video_path, fps=fps_id)
return frames, video_path
@spaces.GPU(duration=120)
def sample_long(
image: Image,
seed: Optional[int] = 42,
randomize_seed: bool = True,
motion_bucket_id: int = 127,
fps_id: int = 6,
cond_aug: float = 0.02,
decoding_t: int = 3, # Number of frames decoded at a time! This can be lowered if VRAM is an issue.
device: str = "cuda",
output_folder: str = "outputs",
progress=gr.Progress(track_tqdm=True)
):
"""
Generate 5 snippets in a row. Each new snippet starts from the last frame of the previous snippet.
Return the path to the final, concatenated MP4.
"""
if image.mode == "RGBA":
image = image.convert("RGB")
if randomize_seed:
seed = random.randint(0, max_64_bit_int)
torch.manual_seed(seed)
snippet_paths = []
current_image = image
for i in range(5):
frames, snippet_path = generate_snippet(
init_image=current_image,
seed=seed,
motion_bucket_id=motion_bucket_id,
fps_id=fps_id,
decoding_t=decoding_t,
device=device,
output_folder=output_folder
)
snippet_paths.append(snippet_path)
# Get the last frame for the next snippet
last_frame = frames[-1] # PIL image
current_image = last_frame
# Optional: re-seed each time if you like randomness in every snippet
# Otherwise, keep the same seed for a more cohesive “style”
# If you want random seeds each snippet, uncomment:
# seed = random.randint(0, max_64_bit_int)
# Concatenate all snippets
final_video_path = os.path.join(output_folder, "final_long_video.mp4")
final_video_path = combine_videos(snippet_paths, output_path=final_video_path)
return final_video_path, seed
with gr.Blocks() as demo:
gr.Markdown('''# Community demo for Stable Video Diffusion - Img2Vid - XT
([model](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt),
[paper](https://stability.ai/research/stable-video-diffusion-scaling-latent-video-diffusion-models-to-large-datasets),
[stability's ui waitlist](https://stability.ai/contact))
#### Research release ([_non-commercial_](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt/blob/main/LICENSE)):
Generate a longer video by chaining together multiple short snippets.
''')
with gr.Row():
with gr.Column():
image = gr.Image(label="Upload your image", type="pil")
generate_btn = gr.Button("Generate Long Video (5 snippets)")
video = gr.Video()
with gr.Accordion("Advanced options", open=False):
seed = gr.Slider(
label="Seed",
value=42,
randomize=True,
minimum=0,
maximum=max_64_bit_int,
step=1
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
motion_bucket_id = gr.Slider(
label="Motion bucket id",
info="Controls how much motion to add/remove from the image",
value=127,
minimum=1,
maximum=255
)
fps_id = gr.Slider(
label="Frames per second",
info="The length of your video in seconds will be 25/fps",
value=6,
minimum=5,
maximum=30
)
# Automatically resize on image upload
image.upload(fn=resize_image, inputs=image, outputs=image, queue=False)
# NEW: Generate a *long* video composed of 5 short snippets
generate_btn.click(
fn=sample_long,
inputs=[image, seed, randomize_seed, motion_bucket_id, fps_id],
outputs=[video, seed],
api_name="video"
)
# You can still provide examples as you did before, but now the
# pipeline will chain 5 videos by default.
gr.Examples(
examples=[
"images/blink_meme.png",
"images/confused2_meme.png",
"images/disaster_meme.png",
"images/distracted_meme.png",
"images/hide_meme.png",
"images/nazare_meme.png",
"images/success_meme.png",
"images/willy_meme.png",
"images/wink_meme.png"
],
inputs=image,
outputs=[video, seed],
fn=sample_long,
cache_examples="lazy",
)
if __name__ == "__main__":
demo.launch(share=True, show_api=False)
|