File size: 7,815 Bytes
b935e3d
1da8dac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45a6a13
 
 
 
1da8dac
 
 
b56981c
1da8dac
 
 
 
 
 
 
 
45a6a13
 
 
 
 
 
1da8dac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45a6a13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1da8dac
45a6a13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f404d24
 
2efae84
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import gradio as gr
import spaces
#import gradio.helpers
import torch
import os
from glob import glob
from pathlib import Path
from typing import Optional

from diffusers import StableVideoDiffusionPipeline
from diffusers.utils import load_image, export_to_video
from PIL import Image

import uuid
import random
from huggingface_hub import hf_hub_download

# NEW CODE HERE:
# If moviepy is not installed by default, you need to ensure your Space installs it (e.g. in requirements.txt).
from moviepy.editor import VideoFileClip, concatenate_videoclips

#gradio.helpers.CACHED_FOLDER = '/data/cache'

pipe = StableVideoDiffusionPipeline.from_pretrained(
    "stabilityai/stable-video-diffusion-img2vid-xt", torch_dtype=torch.float16, variant="fp16"
)
pipe.to("cuda")
#pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
#pipe.vae = torch.compile(pipe.vae, mode="reduce-overhead", fullgraph=True)

max_64_bit_int = 2**63 - 1

def resize_image(image, output_size=(1024, 576)):
    """
    Resizes/crops the image to match a target resolution without
    distorting aspect ratio.
    """
    target_aspect = output_size[0] / output_size[1]
    image_aspect = image.width / image.height

    if image_aspect > target_aspect:
        new_height = output_size[1]
        new_width = int(new_height * image_aspect)
        resized_image = image.resize((new_width, new_height), Image.LANCZOS)
        left = (new_width - output_size[0]) / 2
        top = 0
        right = (new_width + output_size[0]) / 2
        bottom = output_size[1]
    else:
        new_width = output_size[0]
        new_height = int(new_width / image_aspect)
        resized_image = image.resize((new_width, new_height), Image.LANCZOS)
        left = 0
        top = (new_height - output_size[1]) / 2
        right = output_size[0]
        bottom = (new_height + output_size[1]) / 2

    cropped_image = resized_image.crop((left, top, right, bottom))
    return cropped_image

# NEW CODE HERE:
def combine_videos(video_paths, output_path="outputs/final_long_video.mp4"):
    """
    Concatenate a list of MP4 videos into one MP4.
    """
    clips = [VideoFileClip(vp) for vp in video_paths]
    final_clip = concatenate_videoclips(clips, method="compose")
    final_clip.write_videofile(output_path, codec="libx264", fps=clips[0].fps, audio=False)
    return output_path

# NEW CODE HERE:
# We create a helper function that returns both the frames and the snippet path
def generate_snippet(
    init_image: Image,
    seed: int,
    motion_bucket_id: int,
    fps_id: int,
    decoding_t: int = 3,
    device: str = "cuda",
    output_folder: str = "outputs"
):
    """
    Generate a short snippet from `init_image` using the pipeline.
    Returns: (frames, video_path)
    """
    generator = torch.manual_seed(seed)
    os.makedirs(output_folder, exist_ok=True)
    base_count = len(glob(os.path.join(output_folder, "*.mp4")))
    video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")

    # Generate frames
    result = pipe(
        init_image,
        decode_chunk_size=decoding_t,
        generator=generator,
        motion_bucket_id=motion_bucket_id,
        noise_aug_strength=0.1,
        num_frames=25
    )
    frames = result.frames[0]  # a list of PIL images

    # Save snippet
    export_to_video(frames, video_path, fps=fps_id)

    return frames, video_path

@spaces.GPU(duration=120)
def sample_long(
    image: Image,
    seed: Optional[int] = 42,
    randomize_seed: bool = True,
    motion_bucket_id: int = 127,
    fps_id: int = 6,
    cond_aug: float = 0.02,
    decoding_t: int = 3,  # Number of frames decoded at a time! This can be lowered if VRAM is an issue.
    device: str = "cuda",
    output_folder: str = "outputs",
    progress=gr.Progress(track_tqdm=True)
):
    """
    Generate 5 snippets in a row. Each new snippet starts from the last frame of the previous snippet.
    Return the path to the final, concatenated MP4.
    """
    if image.mode == "RGBA":
        image = image.convert("RGB")

    if randomize_seed:
        seed = random.randint(0, max_64_bit_int)
    torch.manual_seed(seed)

    snippet_paths = []
    current_image = image

    for i in range(5):
        frames, snippet_path = generate_snippet(
            init_image=current_image,
            seed=seed,
            motion_bucket_id=motion_bucket_id,
            fps_id=fps_id,
            decoding_t=decoding_t,
            device=device,
            output_folder=output_folder
        )
        snippet_paths.append(snippet_path)

        # Get the last frame for the next snippet
        last_frame = frames[-1]  # PIL image
        current_image = last_frame

        # Optional: re-seed each time if you like randomness in every snippet
        # Otherwise, keep the same seed for a more cohesive “style”
        # If you want random seeds each snippet, uncomment:
        # seed = random.randint(0, max_64_bit_int)

    # Concatenate all snippets
    final_video_path = os.path.join(output_folder, "final_long_video.mp4")
    final_video_path = combine_videos(snippet_paths, output_path=final_video_path)

    return final_video_path, seed


with gr.Blocks() as demo:
    gr.Markdown('''# Community demo for Stable Video Diffusion - Img2Vid - XT 
    ([model](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt), 
    [paper](https://stability.ai/research/stable-video-diffusion-scaling-latent-video-diffusion-models-to-large-datasets), 
    [stability's ui waitlist](https://stability.ai/contact))
    #### Research release ([_non-commercial_](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt/blob/main/LICENSE)):
    Generate a longer video by chaining together multiple short snippets.
    ''')
    
    with gr.Row():
        with gr.Column():
            image = gr.Image(label="Upload your image", type="pil")
            generate_btn = gr.Button("Generate Long Video (5 snippets)")
        video = gr.Video()

    with gr.Accordion("Advanced options", open=False):
        seed = gr.Slider(
            label="Seed",
            value=42,
            randomize=True,
            minimum=0,
            maximum=max_64_bit_int,
            step=1
        )
        randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
        motion_bucket_id = gr.Slider(
            label="Motion bucket id",
            info="Controls how much motion to add/remove from the image",
            value=127,
            minimum=1,
            maximum=255
        )
        fps_id = gr.Slider(
            label="Frames per second",
            info="The length of your video in seconds will be 25/fps",
            value=6,
            minimum=5,
            maximum=30
        )
    
    # Automatically resize on image upload
    image.upload(fn=resize_image, inputs=image, outputs=image, queue=False)

    # NEW: Generate a *long* video composed of 5 short snippets
    generate_btn.click(
        fn=sample_long, 
        inputs=[image, seed, randomize_seed, motion_bucket_id, fps_id], 
        outputs=[video, seed], 
        api_name="video"
    )

    # You can still provide examples as you did before, but now the 
    # pipeline will chain 5 videos by default.
    gr.Examples(
        examples=[
            "images/blink_meme.png",
            "images/confused2_meme.png",
            "images/disaster_meme.png",
            "images/distracted_meme.png",
            "images/hide_meme.png",
            "images/nazare_meme.png",
            "images/success_meme.png",
            "images/willy_meme.png",
            "images/wink_meme.png"
        ],
        inputs=image,
        outputs=[video, seed],
        fn=sample_long,
        cache_examples="lazy",
    )

if __name__ == "__main__":
    demo.launch(share=True, show_api=False)