video concat test
Browse files
app.py
CHANGED
@@ -15,6 +15,10 @@ import uuid
|
|
15 |
import random
|
16 |
from huggingface_hub import hf_hub_download
|
17 |
|
|
|
|
|
|
|
|
|
18 |
#gradio.helpers.CACHED_FOLDER = '/data/cache'
|
19 |
|
20 |
pipe = StableVideoDiffusionPipeline.from_pretrained(
|
@@ -26,103 +30,205 @@ pipe.to("cuda")
|
|
26 |
|
27 |
max_64_bit_int = 2**63 - 1
|
28 |
|
29 |
-
@spaces.GPU(duration=120)
|
30 |
-
def sample(
|
31 |
-
image: Image,
|
32 |
-
seed: Optional[int] = 42,
|
33 |
-
randomize_seed: bool = True,
|
34 |
-
motion_bucket_id: int = 127,
|
35 |
-
fps_id: int = 6,
|
36 |
-
version: str = "svd_xt",
|
37 |
-
cond_aug: float = 0.02,
|
38 |
-
decoding_t: int = 3, # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary.
|
39 |
-
device: str = "cuda",
|
40 |
-
output_folder: str = "outputs",
|
41 |
-
progress=gr.Progress(track_tqdm=True)
|
42 |
-
):
|
43 |
-
if image.mode == "RGBA":
|
44 |
-
image = image.convert("RGB")
|
45 |
-
|
46 |
-
if(randomize_seed):
|
47 |
-
seed = random.randint(0, max_64_bit_int)
|
48 |
-
generator = torch.manual_seed(seed)
|
49 |
-
|
50 |
-
os.makedirs(output_folder, exist_ok=True)
|
51 |
-
base_count = len(glob(os.path.join(output_folder, "*.mp4")))
|
52 |
-
video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")
|
53 |
-
|
54 |
-
frames = pipe(image, decode_chunk_size=decoding_t, generator=generator, motion_bucket_id=motion_bucket_id, noise_aug_strength=0.1, num_frames=25).frames[0]
|
55 |
-
export_to_video(frames, video_path, fps=fps_id)
|
56 |
-
torch.manual_seed(seed)
|
57 |
-
|
58 |
-
return video_path, seed
|
59 |
-
|
60 |
def resize_image(image, output_size=(1024, 576)):
|
61 |
-
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
64 |
|
65 |
-
# Resize then crop if the original image is larger
|
66 |
if image_aspect > target_aspect:
|
67 |
-
# Resize the image to match the target height, maintaining aspect ratio
|
68 |
new_height = output_size[1]
|
69 |
new_width = int(new_height * image_aspect)
|
70 |
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
|
71 |
-
# Calculate coordinates for cropping
|
72 |
left = (new_width - output_size[0]) / 2
|
73 |
top = 0
|
74 |
right = (new_width + output_size[0]) / 2
|
75 |
bottom = output_size[1]
|
76 |
else:
|
77 |
-
# Resize the image to match the target width, maintaining aspect ratio
|
78 |
new_width = output_size[0]
|
79 |
new_height = int(new_width / image_aspect)
|
80 |
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
|
81 |
-
# Calculate coordinates for cropping
|
82 |
left = 0
|
83 |
top = (new_height - output_size[1]) / 2
|
84 |
right = output_size[0]
|
85 |
bottom = (new_height + output_size[1]) / 2
|
86 |
|
87 |
-
# Crop the image
|
88 |
cropped_image = resized_image.crop((left, top, right, bottom))
|
89 |
return cropped_image
|
90 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
with gr.Blocks() as demo:
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
|
126 |
if __name__ == "__main__":
|
127 |
-
#demo.queue(max_size=20, api_open=False)
|
128 |
demo.launch(share=True, show_api=False)
|
|
|
15 |
import random
|
16 |
from huggingface_hub import hf_hub_download
|
17 |
|
18 |
+
# NEW CODE HERE:
|
19 |
+
# If moviepy is not installed by default, you need to ensure your Space installs it (e.g. in requirements.txt).
|
20 |
+
from moviepy.editor import VideoFileClip, concatenate_videoclips
|
21 |
+
|
22 |
#gradio.helpers.CACHED_FOLDER = '/data/cache'
|
23 |
|
24 |
pipe = StableVideoDiffusionPipeline.from_pretrained(
|
|
|
30 |
|
31 |
max_64_bit_int = 2**63 - 1
|
32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
def resize_image(image, output_size=(1024, 576)):
|
34 |
+
"""
|
35 |
+
Resizes/crops the image to match a target resolution without
|
36 |
+
distorting aspect ratio.
|
37 |
+
"""
|
38 |
+
target_aspect = output_size[0] / output_size[1]
|
39 |
+
image_aspect = image.width / image.height
|
40 |
|
|
|
41 |
if image_aspect > target_aspect:
|
|
|
42 |
new_height = output_size[1]
|
43 |
new_width = int(new_height * image_aspect)
|
44 |
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
|
|
|
45 |
left = (new_width - output_size[0]) / 2
|
46 |
top = 0
|
47 |
right = (new_width + output_size[0]) / 2
|
48 |
bottom = output_size[1]
|
49 |
else:
|
|
|
50 |
new_width = output_size[0]
|
51 |
new_height = int(new_width / image_aspect)
|
52 |
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
|
|
|
53 |
left = 0
|
54 |
top = (new_height - output_size[1]) / 2
|
55 |
right = output_size[0]
|
56 |
bottom = (new_height + output_size[1]) / 2
|
57 |
|
|
|
58 |
cropped_image = resized_image.crop((left, top, right, bottom))
|
59 |
return cropped_image
|
60 |
|
61 |
+
# NEW CODE HERE:
|
62 |
+
def combine_videos(video_paths, output_path="outputs/final_long_video.mp4"):
|
63 |
+
"""
|
64 |
+
Concatenate a list of MP4 videos into one MP4.
|
65 |
+
"""
|
66 |
+
clips = [VideoFileClip(vp) for vp in video_paths]
|
67 |
+
final_clip = concatenate_videoclips(clips, method="compose")
|
68 |
+
final_clip.write_videofile(output_path, codec="libx264", fps=clips[0].fps, audio=False)
|
69 |
+
return output_path
|
70 |
+
|
71 |
+
# NEW CODE HERE:
|
72 |
+
# We create a helper function that returns both the frames and the snippet path
|
73 |
+
def generate_snippet(
|
74 |
+
init_image: Image,
|
75 |
+
seed: int,
|
76 |
+
motion_bucket_id: int,
|
77 |
+
fps_id: int,
|
78 |
+
decoding_t: int = 3,
|
79 |
+
device: str = "cuda",
|
80 |
+
output_folder: str = "outputs"
|
81 |
+
):
|
82 |
+
"""
|
83 |
+
Generate a short snippet from `init_image` using the pipeline.
|
84 |
+
Returns: (frames, video_path)
|
85 |
+
"""
|
86 |
+
generator = torch.manual_seed(seed)
|
87 |
+
os.makedirs(output_folder, exist_ok=True)
|
88 |
+
base_count = len(glob(os.path.join(output_folder, "*.mp4")))
|
89 |
+
video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")
|
90 |
+
|
91 |
+
# Generate frames
|
92 |
+
result = pipe(
|
93 |
+
init_image,
|
94 |
+
decode_chunk_size=decoding_t,
|
95 |
+
generator=generator,
|
96 |
+
motion_bucket_id=motion_bucket_id,
|
97 |
+
noise_aug_strength=0.1,
|
98 |
+
num_frames=25
|
99 |
+
)
|
100 |
+
frames = result.frames[0] # a list of PIL images
|
101 |
+
|
102 |
+
# Save snippet
|
103 |
+
export_to_video(frames, video_path, fps=fps_id)
|
104 |
+
|
105 |
+
return frames, video_path
|
106 |
+
|
107 |
+
@spaces.GPU(duration=120)
|
108 |
+
def sample_long(
|
109 |
+
image: Image,
|
110 |
+
seed: Optional[int] = 42,
|
111 |
+
randomize_seed: bool = True,
|
112 |
+
motion_bucket_id: int = 127,
|
113 |
+
fps_id: int = 6,
|
114 |
+
cond_aug: float = 0.02,
|
115 |
+
decoding_t: int = 3, # Number of frames decoded at a time! This can be lowered if VRAM is an issue.
|
116 |
+
device: str = "cuda",
|
117 |
+
output_folder: str = "outputs",
|
118 |
+
progress=gr.Progress(track_tqdm=True)
|
119 |
+
):
|
120 |
+
"""
|
121 |
+
Generate 5 snippets in a row. Each new snippet starts from the last frame of the previous snippet.
|
122 |
+
Return the path to the final, concatenated MP4.
|
123 |
+
"""
|
124 |
+
if image.mode == "RGBA":
|
125 |
+
image = image.convert("RGB")
|
126 |
+
|
127 |
+
if randomize_seed:
|
128 |
+
seed = random.randint(0, max_64_bit_int)
|
129 |
+
torch.manual_seed(seed)
|
130 |
+
|
131 |
+
snippet_paths = []
|
132 |
+
current_image = image
|
133 |
+
|
134 |
+
for i in range(5):
|
135 |
+
frames, snippet_path = generate_snippet(
|
136 |
+
init_image=current_image,
|
137 |
+
seed=seed,
|
138 |
+
motion_bucket_id=motion_bucket_id,
|
139 |
+
fps_id=fps_id,
|
140 |
+
decoding_t=decoding_t,
|
141 |
+
device=device,
|
142 |
+
output_folder=output_folder
|
143 |
+
)
|
144 |
+
snippet_paths.append(snippet_path)
|
145 |
+
|
146 |
+
# Get the last frame for the next snippet
|
147 |
+
last_frame = frames[-1] # PIL image
|
148 |
+
current_image = last_frame
|
149 |
+
|
150 |
+
# Optional: re-seed each time if you like randomness in every snippet
|
151 |
+
# Otherwise, keep the same seed for a more cohesive “style”
|
152 |
+
# If you want random seeds each snippet, uncomment:
|
153 |
+
# seed = random.randint(0, max_64_bit_int)
|
154 |
+
|
155 |
+
# Concatenate all snippets
|
156 |
+
final_video_path = os.path.join(output_folder, "final_long_video.mp4")
|
157 |
+
final_video_path = combine_videos(snippet_paths, output_path=final_video_path)
|
158 |
+
|
159 |
+
return final_video_path, seed
|
160 |
+
|
161 |
+
|
162 |
with gr.Blocks() as demo:
|
163 |
+
gr.Markdown('''# Community demo for Stable Video Diffusion - Img2Vid - XT
|
164 |
+
([model](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt),
|
165 |
+
[paper](https://stability.ai/research/stable-video-diffusion-scaling-latent-video-diffusion-models-to-large-datasets),
|
166 |
+
[stability's ui waitlist](https://stability.ai/contact))
|
167 |
+
#### Research release ([_non-commercial_](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt/blob/main/LICENSE)):
|
168 |
+
Generate a longer video by chaining together multiple short snippets.
|
169 |
+
''')
|
170 |
+
|
171 |
+
with gr.Row():
|
172 |
+
with gr.Column():
|
173 |
+
image = gr.Image(label="Upload your image", type="pil")
|
174 |
+
generate_btn = gr.Button("Generate Long Video (5 snippets)")
|
175 |
+
video = gr.Video()
|
176 |
+
|
177 |
+
with gr.Accordion("Advanced options", open=False):
|
178 |
+
seed = gr.Slider(
|
179 |
+
label="Seed",
|
180 |
+
value=42,
|
181 |
+
randomize=True,
|
182 |
+
minimum=0,
|
183 |
+
maximum=max_64_bit_int,
|
184 |
+
step=1
|
185 |
+
)
|
186 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
187 |
+
motion_bucket_id = gr.Slider(
|
188 |
+
label="Motion bucket id",
|
189 |
+
info="Controls how much motion to add/remove from the image",
|
190 |
+
value=127,
|
191 |
+
minimum=1,
|
192 |
+
maximum=255
|
193 |
+
)
|
194 |
+
fps_id = gr.Slider(
|
195 |
+
label="Frames per second",
|
196 |
+
info="The length of your video in seconds will be 25/fps",
|
197 |
+
value=6,
|
198 |
+
minimum=5,
|
199 |
+
maximum=30
|
200 |
+
)
|
201 |
+
|
202 |
+
# Automatically resize on image upload
|
203 |
+
image.upload(fn=resize_image, inputs=image, outputs=image, queue=False)
|
204 |
+
|
205 |
+
# NEW: Generate a *long* video composed of 5 short snippets
|
206 |
+
generate_btn.click(
|
207 |
+
fn=sample_long,
|
208 |
+
inputs=[image, seed, randomize_seed, motion_bucket_id, fps_id],
|
209 |
+
outputs=[video, seed],
|
210 |
+
api_name="video"
|
211 |
+
)
|
212 |
+
|
213 |
+
# You can still provide examples as you did before, but now the
|
214 |
+
# pipeline will chain 5 videos by default.
|
215 |
+
gr.Examples(
|
216 |
+
examples=[
|
217 |
+
"images/blink_meme.png",
|
218 |
+
"images/confused2_meme.png",
|
219 |
+
"images/disaster_meme.png",
|
220 |
+
"images/distracted_meme.png",
|
221 |
+
"images/hide_meme.png",
|
222 |
+
"images/nazare_meme.png",
|
223 |
+
"images/success_meme.png",
|
224 |
+
"images/willy_meme.png",
|
225 |
+
"images/wink_meme.png"
|
226 |
+
],
|
227 |
+
inputs=image,
|
228 |
+
outputs=[video, seed],
|
229 |
+
fn=sample_long,
|
230 |
+
cache_examples="lazy",
|
231 |
+
)
|
232 |
|
233 |
if __name__ == "__main__":
|
|
|
234 |
demo.launch(share=True, show_api=False)
|