burhan112's picture
Update app.py
3c2266c verified
raw
history blame
1.71 kB
import gradio as gr
import torch
import torch.nn as nn
import sentencepiece as spm
import math
# Load tokenizers
sp_pseudo = spm.SentencePieceProcessor(model_file="pseudocode_tokenizer.model") # For decoding pseudocode (target)
sp_code = spm.SentencePieceProcessor(model_file="code_tokenizer.model") # For encoding C++ (source)
# Load the full saved model (architecture + weights)
model_path = "code2pseudo.pth"
model = torch.load(model_path, map_location=torch.device("cuda" if torch.cuda.is_available() else "cpu"), weights_only=False)
model.eval()
# Function to generate pseudocode
def generate_pseudocode(cpp_code, max_len):
model.eval()
src = torch.tensor([sp_code.encode_as_ids(cpp_code)], dtype=torch.long) # Tokenize C++ code
tgt = torch.tensor([[2]], dtype=torch.long) # <bos_id>=2
generated_tokens = [2] # Start with <START>
for _ in range(max_len):
output = model(src, tgt)
next_token = output[:, -1, :].argmax(-1).item()
generated_tokens.append(next_token)
tgt = torch.cat([tgt, torch.tensor([[next_token]])], dim=1)
if next_token == 3: # <END>=3
break
return sp_pseudo.decode_ids(generated_tokens) # Final decoded output
# Gradio interface
demo = gr.Interface(
fn=generate_pseudocode,
inputs=[
gr.Textbox(placeholder="Enter C++ code here", label="C++ Code"),
gr.Slider(minimum=10, maximum=1000, value=50, step=1, label="Max Tokens")
],
outputs=gr.Textbox(label="Generated Pseudocode"),
title="C++ to Pseudocode Converter",
description="Enter C++ code and get its pseudocode equivalent using a transformer model."
)
if __name__ == "__main__":
demo.launch()