Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
import torch.nn as nn | |
import sentencepiece as spm | |
import math | |
# Load tokenizers | |
sp_pseudo = spm.SentencePieceProcessor(model_file="pseudocode_tokenizer.model") # For decoding pseudocode (target) | |
sp_code = spm.SentencePieceProcessor(model_file="code_tokenizer.model") # For encoding C++ (source) | |
# Load the full saved model (architecture + weights) | |
model_path = "code2pseudo.pth" | |
model = torch.load(model_path, map_location=torch.device("cuda" if torch.cuda.is_available() else "cpu"), weights_only=False) | |
model.eval() | |
# Function to generate pseudocode | |
def generate_pseudocode(cpp_code, max_len): | |
model.eval() | |
src = torch.tensor([sp_code.encode_as_ids(cpp_code)], dtype=torch.long) # Tokenize C++ code | |
tgt = torch.tensor([[2]], dtype=torch.long) # <bos_id>=2 | |
generated_tokens = [2] # Start with <START> | |
for _ in range(max_len): | |
output = model(src, tgt) | |
next_token = output[:, -1, :].argmax(-1).item() | |
generated_tokens.append(next_token) | |
tgt = torch.cat([tgt, torch.tensor([[next_token]])], dim=1) | |
if next_token == 3: # <END>=3 | |
break | |
return sp_pseudo.decode_ids(generated_tokens) # Final decoded output | |
# Gradio interface | |
demo = gr.Interface( | |
fn=generate_pseudocode, | |
inputs=[ | |
gr.Textbox(placeholder="Enter C++ code here", label="C++ Code"), | |
gr.Slider(minimum=10, maximum=1000, value=50, step=1, label="Max Tokens") | |
], | |
outputs=gr.Textbox(label="Generated Pseudocode"), | |
title="C++ to Pseudocode Converter", | |
description="Enter C++ code and get its pseudocode equivalent using a transformer model." | |
) | |
if __name__ == "__main__": | |
demo.launch() | |