import gradio as gr import torch import torch.nn as nn import sentencepiece as spm import math # Load tokenizers sp_pseudo = spm.SentencePieceProcessor(model_file="pseudocode_tokenizer.model") # For decoding pseudocode (target) sp_code = spm.SentencePieceProcessor(model_file="code_tokenizer.model") # For encoding C++ (source) # Load the full saved model (architecture + weights) model_path = "code2pseudo.pth" model = torch.load(model_path, map_location=torch.device("cuda" if torch.cuda.is_available() else "cpu"), weights_only=False) model.eval() # Function to generate pseudocode def generate_pseudocode(cpp_code, max_len): model.eval() src = torch.tensor([sp_code.encode_as_ids(cpp_code)], dtype=torch.long) # Tokenize C++ code tgt = torch.tensor([[2]], dtype=torch.long) # =2 generated_tokens = [2] # Start with for _ in range(max_len): output = model(src, tgt) next_token = output[:, -1, :].argmax(-1).item() generated_tokens.append(next_token) tgt = torch.cat([tgt, torch.tensor([[next_token]])], dim=1) if next_token == 3: # =3 break return sp_pseudo.decode_ids(generated_tokens) # Final decoded output # Gradio interface demo = gr.Interface( fn=generate_pseudocode, inputs=[ gr.Textbox(placeholder="Enter C++ code here", label="C++ Code"), gr.Slider(minimum=10, maximum=1000, value=50, step=1, label="Max Tokens") ], outputs=gr.Textbox(label="Generated Pseudocode"), title="C++ to Pseudocode Converter", description="Enter C++ code and get its pseudocode equivalent using a transformer model." ) if __name__ == "__main__": demo.launch()