burhan112 commited on
Commit
3c2266c
·
verified ·
1 Parent(s): fc2bdb8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +21 -163
app.py CHANGED
@@ -4,183 +4,41 @@ import torch.nn as nn
4
  import sentencepiece as spm
5
  import math
6
 
7
- # Define Transformer components (unchanged)
8
- class MultiHeadAttention(nn.Module):
9
- def __init__(self, d_model, num_heads):
10
- super(MultiHeadAttention, self).__init__()
11
- assert d_model % num_heads == 0
12
- self.d_model = d_model
13
- self.num_heads = num_heads
14
- self.d_k = d_model // num_heads
15
- self.W_q = nn.Linear(d_model, d_model)
16
- self.W_k = nn.Linear(d_model, d_model)
17
- self.W_v = nn.Linear(d_model, d_model)
18
- self.W_o = nn.Linear(d_model, d_model)
19
-
20
- def scaled_dot_product_attention(self, Q, K, V, mask=None):
21
- attn_scores = torch.matmul(Q, K.transpose(-2, -1)) / math.sqrt(self.d_k)
22
- if mask is not None:
23
- attn_scores = attn_scores.masked_fill(mask == 0, -1e9)
24
- attn_probs = torch.softmax(attn_scores, dim=-1)
25
- output = torch.matmul(attn_probs, V)
26
- return output
27
-
28
- def split_heads(self, x):
29
- batch_size, seq_length, d_model = x.size()
30
- return x.view(batch_size, seq_length, self.num_heads, self.d_k).transpose(1, 2)
31
-
32
- def combine_heads(self, x):
33
- batch_size, _, seq_length, d_k = x.size()
34
- return x.transpose(1, 2).contiguous().view(batch_size, seq_length, self.d_model)
35
-
36
- def forward(self, Q, K, V, mask=None):
37
- Q = self.split_heads(self.W_q(Q))
38
- K = self.split_heads(self.W_k(K))
39
- V = self.split_heads(self.W_v(V))
40
- attn_output = self.scaled_dot_product_attention(Q, K, V, mask)
41
- output = self.W_o(self.combine_heads(attn_output))
42
- return output
43
-
44
- class PositionWiseFeedForward(nn.Module):
45
- def __init__(self, d_model, d_ff):
46
- super(PositionWiseFeedForward, self).__init__()
47
- self.fc1 = nn.Linear(d_model, d_ff)
48
- self.fc2 = nn.Linear(d_ff, d_model)
49
- self.relu = nn.ReLU()
50
-
51
- def forward(self, x):
52
- return self.fc2(self.relu(self.fc1(x)))
53
-
54
- class PositionalEncoding(nn.Module):
55
- def __init__(self, d_model, max_seq_length):
56
- super(PositionalEncoding, self).__init__()
57
- pe = torch.zeros(max_seq_length, d_model)
58
- position = torch.arange(0, max_seq_length, dtype=torch.float).unsqueeze(1)
59
- div_term = torch.exp(torch.arange(0, d_model, 2).float() * -(math.log(10000.0) / d_model))
60
- pe[:, 0::2] = torch.sin(position * div_term)
61
- pe[:, 1::2] = torch.cos(position * div_term)
62
- self.register_buffer('pe', pe.unsqueeze(0))
63
-
64
- def forward(self, x):
65
- return x + self.pe[:, :x.size(1)]
66
-
67
- class EncoderLayer(nn.Module):
68
- def __init__(self, d_model, num_heads, d_ff, dropout):
69
- super(EncoderLayer, self).__init__()
70
- self.self_attn = MultiHeadAttention(d_model, num_heads)
71
- self.feed_forward = PositionWiseFeedForward(d_model, d_ff)
72
- self.norm1 = nn.LayerNorm(d_model)
73
- self.norm2 = nn.LayerNorm(d_model)
74
- self.dropout = nn.Dropout(dropout)
75
-
76
- def forward(self, x, mask):
77
- attn_output = self.self_attn(x, x, x, mask)
78
- x = self.norm1(x + self.dropout(attn_output))
79
- ff_output = self.feed_forward(x)
80
- x = self.norm2(x + self.dropout(ff_output))
81
- return x
82
-
83
- class DecoderLayer(nn.Module):
84
- def __init__(self, d_model, num_heads, d_ff, dropout):
85
- super(DecoderLayer, self).__init__()
86
- self.self_attn = MultiHeadAttention(d_model, num_heads)
87
- self.cross_attn = MultiHeadAttention(d_model, num_heads)
88
- self.feed_forward = PositionWiseFeedForward(d_model, d_ff)
89
- self.norm1 = nn.LayerNorm(d_model)
90
- self.norm2 = nn.LayerNorm(d_model)
91
- self.norm3 = nn.LayerNorm(d_model)
92
- self.dropout = nn.Dropout(dropout)
93
-
94
- def forward(self, x, enc_output, src_mask, tgt_mask):
95
- attn_output = self.self_attn(x, x, x, tgt_mask)
96
- x = self.norm1(x + self.dropout(attn_output))
97
- attn_output = self.cross_attn(x, enc_output, enc_output, src_mask)
98
- x = self.norm2(x + self.dropout(attn_output))
99
- ff_output = self.feed_forward(x)
100
- x = self.norm3(x + self.dropout(ff_output))
101
- return x
102
-
103
- class Transformer(nn.Module):
104
- def __init__(self, src_vocab_size, tgt_vocab_size, d_model, num_heads, num_layers, d_ff, max_seq_length, dropout):
105
- super(Transformer, self).__init__()
106
- self.encoder_embedding = nn.Embedding(src_vocab_size, d_model)
107
- self.decoder_embedding = nn.Embedding(tgt_vocab_size, d_model)
108
- self.positional_encoding = PositionalEncoding(d_model, max_seq_length)
109
- self.encoder_layers = nn.ModuleList([EncoderLayer(d_model, num_heads, d_ff, dropout) for _ in range(num_layers)])
110
- self.decoder_layers = nn.ModuleList([DecoderLayer(d_model, num_heads, d_ff, dropout) for _ in range(num_layers)])
111
- self.fc = nn.Linear(d_model, tgt_vocab_size)
112
- self.dropout = nn.Dropout(dropout)
113
-
114
- def generate_mask(self, src, tgt):
115
- src_mask = (src != 0).unsqueeze(1).unsqueeze(2)
116
- tgt_mask = (tgt != 0).unsqueeze(1).unsqueeze(3)
117
- seq_length = tgt.size(1)
118
- nopeak_mask = (1 - torch.triu(torch.ones(1, seq_length, seq_length), diagonal=1)).bool()
119
- tgt_mask = tgt_mask & nopeak_mask
120
- return src_mask, tgt_mask
121
-
122
- def forward(self, src, tgt):
123
- src_mask, tgt_mask = self.generate_mask(src, tgt)
124
- src_embedded = self.dropout(self.positional_encoding(self.encoder_embedding(src)))
125
- tgt_embedded = self.dropout(self.positional_encoding(self.decoder_embedding(tgt)))
126
- enc_output = src_embedded
127
- for enc_layer in self.encoder_layers:
128
- enc_output = enc_layer(enc_output, src_mask)
129
- dec_output = tgt_embedded
130
- for dec_layer in self.decoder_layers:
131
- dec_output = dec_layer(dec_output, enc_output, src_mask, tgt_mask)
132
- output = self.fc(dec_output)
133
- return output
134
-
135
- # Set device
136
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
137
-
138
  # Load tokenizers
139
  sp_pseudo = spm.SentencePieceProcessor(model_file="pseudocode_tokenizer.model") # For decoding pseudocode (target)
140
  sp_code = spm.SentencePieceProcessor(model_file="code_tokenizer.model") # For encoding C++ (source)
141
 
142
  # Load the full saved model (architecture + weights)
143
  model_path = "code2pseudo.pth"
144
- model = torch.load(model_path, map_location=device, weights_only=False)
145
  model.eval()
146
- model = model.to(device)
147
 
 
148
  def generate_pseudocode(cpp_code, max_len):
149
- """Generate pseudocode from C++ code with streaming output."""
150
  model.eval()
151
- src = torch.tensor([sp_code.encode_as_ids(cpp_code)], dtype=torch.long, device=device) # Tokenize C++ code
152
- tgt = torch.tensor([[2]], dtype=torch.long, device=device) # <bos_id>=2
153
-
154
  generated_tokens = [2] # Start with <START>
155
- response = ""
156
- with torch.no_grad():
157
- for _ in range(max_len):
158
- output = model(src, tgt)
159
- next_token = output[:, -1, :].argmax(-1).item()
160
- generated_tokens.append(next_token)
161
- tgt = torch.cat([tgt, torch.tensor([[next_token]], device=device)], dim=1)
162
- response = sp_pseudo.decode_ids(generated_tokens) # Decode to pseudocode
163
- yield response # Yield partial output
164
- if next_token == 3: # <END>=3 (adjust if your EOS ID differs)
165
- break
166
- yield response # Final output
167
-
168
- def respond(message, history, max_tokens):
169
- """Wrapper for Gradio interface."""
170
- for response in generate_pseudocode(message, max_tokens):
171
- yield response
172
 
173
  # Gradio interface
174
- demo = gr.ChatInterface(
175
- respond,
176
- chatbot=gr.Chatbot(label="C++ to Pseudocode Generator"),
177
- textbox=gr.Textbox(placeholder="Enter C++ code (e.g., 'int x = 5; for(int i=0; i<x; i++) cout << i;')", label="C++ Code"),
178
- additional_inputs=[
179
- gr.Slider(minimum=10, maximum=1000, value=50, step=1, label="Max tokens"),
180
  ],
181
- title="C++ to Pseudocode Transformer",
182
- description="Convert C++ code to pseudocode using a custom transformer trained on the SPoC dataset.",
 
183
  )
184
 
185
  if __name__ == "__main__":
186
- demo.launch()
 
4
  import sentencepiece as spm
5
  import math
6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  # Load tokenizers
8
  sp_pseudo = spm.SentencePieceProcessor(model_file="pseudocode_tokenizer.model") # For decoding pseudocode (target)
9
  sp_code = spm.SentencePieceProcessor(model_file="code_tokenizer.model") # For encoding C++ (source)
10
 
11
  # Load the full saved model (architecture + weights)
12
  model_path = "code2pseudo.pth"
13
+ model = torch.load(model_path, map_location=torch.device("cuda" if torch.cuda.is_available() else "cpu"), weights_only=False)
14
  model.eval()
 
15
 
16
+ # Function to generate pseudocode
17
  def generate_pseudocode(cpp_code, max_len):
 
18
  model.eval()
19
+ src = torch.tensor([sp_code.encode_as_ids(cpp_code)], dtype=torch.long) # Tokenize C++ code
20
+ tgt = torch.tensor([[2]], dtype=torch.long) # <bos_id>=2
 
21
  generated_tokens = [2] # Start with <START>
22
+ for _ in range(max_len):
23
+ output = model(src, tgt)
24
+ next_token = output[:, -1, :].argmax(-1).item()
25
+ generated_tokens.append(next_token)
26
+ tgt = torch.cat([tgt, torch.tensor([[next_token]])], dim=1)
27
+ if next_token == 3: # <END>=3
28
+ break
29
+ return sp_pseudo.decode_ids(generated_tokens) # Final decoded output
 
 
 
 
 
 
 
 
 
30
 
31
  # Gradio interface
32
+ demo = gr.Interface(
33
+ fn=generate_pseudocode,
34
+ inputs=[
35
+ gr.Textbox(placeholder="Enter C++ code here", label="C++ Code"),
36
+ gr.Slider(minimum=10, maximum=1000, value=50, step=1, label="Max Tokens")
 
37
  ],
38
+ outputs=gr.Textbox(label="Generated Pseudocode"),
39
+ title="C++ to Pseudocode Converter",
40
+ description="Enter C++ code and get its pseudocode equivalent using a transformer model."
41
  )
42
 
43
  if __name__ == "__main__":
44
+ demo.launch()