karthikvarunn's picture
Create app.py
30d3882 verified
raw
history blame
9.1 kB
import os
from dotenv import load_dotenv
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.schema import HumanMessage
from langchain_openai import OpenAIEmbeddings
from langchain_voyageai import VoyageAIEmbeddings
from langchain_pinecone import PineconeVectorStore
from langchain_openai import ChatOpenAI
from langchain.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
from typing import List, Tuple
from langchain.schema import BaseRetriever
from langchain_core.documents import Document
from langchain_core.runnables import chain
from pinecone import Pinecone, ServerlessSpec
import openai
import numpy as np
import gradio as gr
load_dotenv()
# Initialize OpenAI and Pinecone credentials
openai.api_key = os.environ.get("OPENAI_API_KEY")
pinecone_api_key = os.environ.get("PINECONE_API_KEY")
pinecone_environment = os.environ.get("PINECONE_ENV")
voyage_api_key = os.environ.get("VOYAGE_API_KEY")
# Initialize Pinecone
try:
pc = Pinecone(api_key=pinecone_api_key)
except Exception as e:
print(f"Error connecting to Pinecone: {str(e)}")
embeddings = VoyageAIEmbeddings(
voyage_api_key=voyage_api_key, model="voyage-law-2"
)
def expand_query(query):
"""
Expands the query to make it more precise using an LLM.
Example: "docs" -> "Find all legal documents related to case law."
"""
llm = ChatOpenAI(model="gpt-4", openai_api_key=openai.api_key, temperature=0.3)
prompt = f"Rewrite the following vague search query into a more specific one:\nQuery: {query}\nSpecific Query:"
refined_query = llm([HumanMessage(content=prompt)]).content.strip()
return refined_query if refined_query else query
def search_documents(query, user_groups, index_name="briefmeta", min_score=0.01):
try:
vector_store = PineconeVectorStore(index_name=index_name, embedding=embeddings)
results = vector_store.max_marginal_relevance_search(query, k=10, fetch_k=30)
seen_ids = set()
unique_results = []
for result in results:
unique_id = result.metadata.get("id")
doc_groups = result.metadata.get("groups", [])
score = result.metadata.get("score", 0)
# Apply user group filtering & score threshold
if unique_id not in seen_ids and any(group in user_groups for group in doc_groups) and score > min_score:
seen_ids.add(unique_id)
unique_results.append(result)
context = [
{
"doc_id": result.metadata.get("doc_id", "N/A"),
"chunk_id": result.metadata.get("id", "N/A"),
"title": result.metadata.get("source", "N/A"),
"text": result.page_content,
"page_number": str(result.metadata.get("page_number", "N/A")),
"score": str(result.metadata.get("score", "N/A")),
}
for result in unique_results
]
return context
except Exception as e:
return [], f"Error searching documents: {str(e)}"
def rerank(query, context):
result = pc.inference.rerank(
model="bge-reranker-v2-m3",
query=query,
documents=context,
top_n=5,
return_documents=True,
)
return result
def generate_output(context, query):
try:
llm = ChatOpenAI(model="gpt-4", openai_api_key=openai.api_key, temperature=0.5)
if not context.strip():
return "I couldn't find relevant information for your query. Could you refine your question?"
prompt_template = PromptTemplate(
template="""Use the following document context to answer accurately:
Context: {context}
Question: {question}
If the answer is unclear, ask for clarification.
Answer:""",
input_variables=["context", "question"]
)
prompt = prompt_template.format(context=context, question=query)
response = llm([HumanMessage(content=prompt)]).content.strip()
return response if response else "No relevant answer found."
except Exception as e:
return f"Error generating output: {str(e)}"
def generate_search_summary(search_results, document_titles, query):
"""
Generates an intelligent search summary based on retrieved documents.
"""
try:
if not search_results:
return "No relevant documents were found for your search. Try refining your query."
# Extract metadata
num_results = len(document_titles)
doc_titles = [doc.get("title", "Unknown Document") for doc in search_results]
doc_pages = [doc.get("page_number", "N/A") for doc in search_results]
relevance_scores = [float(doc.get("score", 0)) for doc in search_results]
# Identify recency (to be implemented)
recency_info = ""
if "date_uploaded" in search_results[0]: # Assuming date is available
dates = [doc.get("date_uploaded", "Unknown") for doc in search_results]
recency_info = f"Most recent document uploaded on {max(dates)}."
# Identify common keywords
common_terms = set()
for doc in search_results:
text_snippet = doc.get("text", "").split()[:50] # Take first 50 words
common_terms.update(text_snippet)
summary_prompt = f"""
Generate a concise 1-3 sentence summary of the search results.
- User Query: "{query}"
- Matching Documents: {num_results} found
- Titles: {", ".join(set(doc_titles))}
- Pages Referenced: {", ".join(set(doc_pages))}
- Common Terms: {", ".join(list(common_terms)[:10])} (top terms)
- Recency: {recency_info}
- Relevance Scores (0-1): {relevance_scores}
Provide a clear, user-friendly summary with an action suggestion.
"""
llm = ChatOpenAI(model="gpt-4", openai_api_key=openai.api_key, temperature=0.5)
summary = llm([HumanMessage(content=summary_prompt)]).content.strip()
return summary if summary else "No intelligent summary available."
except Exception as e:
return f"Error generating search summary: {str(e)}"
def complete_workflow(query, user_groups, index_name="briefmeta"):
try:
# Expand the query
refined_query = expand_query(query)
# Proceed with refined query instead of the original
context_data = search_documents(refined_query, user_groups)
reranked = rerank(refined_query, context_data)
context_data = []
for i, entry in enumerate(reranked.data):
context_data.append({
'chunk_id': entry['document']['chunk_id'],
'doc_id': entry['document']['doc_id'],
'title': entry['document']['title'],
'text': entry['document']['text'],
'page_number': str(entry['document']['page_number']),
'score': str(entry['score'])
})
document_titles = list({os.path.basename(doc["title"]) for doc in context_data})
formatted_titles = " " + "\n".join(document_titles)
total_results = len(context_data)
results = {
"results": [
{
"natural_language_output": generate_output(doc["text"], refined_query), # Use refined query
"chunk_id": doc["chunk_id"],
"document_id": doc["doc_id"],
"title": doc["title"],
"text": doc["text"],
"page_number": doc["page_number"],
"score": doc["score"],
}
for doc in context_data
],
"total_results": total_results
}
return results, formatted_titles
except Exception as e:
return {"results": [], "total_results": 0}, f"Error in workflow: {str(e)}"
def gradio_app():
with gr.Blocks(css=".result-output {width: 150%; font-size: 16px; padding: 10px;}") as app:
gr.Markdown("### Intelligent Document Search Prototype-v0.2")
with gr.Row():
user_query = gr.Textbox(label=" Enter Search Query")
user_groups = gr.Textbox(label=" User Groups", placeholder="e.g., ['KarthikPersonal']", interactive=True)
index_name = gr.Textbox(label=" Index Name", placeholder="Default: briefmeta", interactive=True)
search_btn = gr.Button(" Search")
with gr.Row():
result_output = gr.JSON(label=" Search Results", elem_id="result-output")
with gr.Row():
titles_output = gr.Textbox(label=" Retrieved Document Titles", interactive=False)
search_btn.click(
complete_workflow,
inputs=[user_query, user_groups, index_name],
outputs=[result_output, titles_output]
)
return app
# Launch the app
gradio_app().launch()