karthikvarunn commited on
Commit
30d3882
·
verified ·
1 Parent(s): 8d783c5

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +238 -0
app.py ADDED
@@ -0,0 +1,238 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from dotenv import load_dotenv
3
+ from langchain_community.document_loaders import PyPDFLoader
4
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
5
+ from langchain.schema import HumanMessage
6
+ from langchain_openai import OpenAIEmbeddings
7
+ from langchain_voyageai import VoyageAIEmbeddings
8
+ from langchain_pinecone import PineconeVectorStore
9
+ from langchain_openai import ChatOpenAI
10
+ from langchain.prompts import PromptTemplate
11
+ from langchain_core.output_parsers import StrOutputParser
12
+ from typing import List, Tuple
13
+ from langchain.schema import BaseRetriever
14
+ from langchain_core.documents import Document
15
+ from langchain_core.runnables import chain
16
+ from pinecone import Pinecone, ServerlessSpec
17
+ import openai
18
+ import numpy as np
19
+ import gradio as gr
20
+
21
+ load_dotenv()
22
+
23
+ # Initialize OpenAI and Pinecone credentials
24
+ openai.api_key = os.environ.get("OPENAI_API_KEY")
25
+ pinecone_api_key = os.environ.get("PINECONE_API_KEY")
26
+ pinecone_environment = os.environ.get("PINECONE_ENV")
27
+ voyage_api_key = os.environ.get("VOYAGE_API_KEY")
28
+
29
+ # Initialize Pinecone
30
+ try:
31
+ pc = Pinecone(api_key=pinecone_api_key)
32
+ except Exception as e:
33
+ print(f"Error connecting to Pinecone: {str(e)}")
34
+
35
+ embeddings = VoyageAIEmbeddings(
36
+ voyage_api_key=voyage_api_key, model="voyage-law-2"
37
+ )
38
+
39
+ def expand_query(query):
40
+ """
41
+ Expands the query to make it more precise using an LLM.
42
+ Example: "docs" -> "Find all legal documents related to case law."
43
+ """
44
+ llm = ChatOpenAI(model="gpt-4", openai_api_key=openai.api_key, temperature=0.3)
45
+ prompt = f"Rewrite the following vague search query into a more specific one:\nQuery: {query}\nSpecific Query:"
46
+
47
+ refined_query = llm([HumanMessage(content=prompt)]).content.strip()
48
+
49
+ return refined_query if refined_query else query
50
+
51
+ def search_documents(query, user_groups, index_name="briefmeta", min_score=0.01):
52
+ try:
53
+ vector_store = PineconeVectorStore(index_name=index_name, embedding=embeddings)
54
+
55
+ results = vector_store.max_marginal_relevance_search(query, k=10, fetch_k=30)
56
+
57
+ seen_ids = set()
58
+ unique_results = []
59
+
60
+ for result in results:
61
+ unique_id = result.metadata.get("id")
62
+ doc_groups = result.metadata.get("groups", [])
63
+ score = result.metadata.get("score", 0)
64
+
65
+ # Apply user group filtering & score threshold
66
+ if unique_id not in seen_ids and any(group in user_groups for group in doc_groups) and score > min_score:
67
+ seen_ids.add(unique_id)
68
+ unique_results.append(result)
69
+
70
+ context = [
71
+ {
72
+ "doc_id": result.metadata.get("doc_id", "N/A"),
73
+ "chunk_id": result.metadata.get("id", "N/A"),
74
+ "title": result.metadata.get("source", "N/A"),
75
+ "text": result.page_content,
76
+ "page_number": str(result.metadata.get("page_number", "N/A")),
77
+ "score": str(result.metadata.get("score", "N/A")),
78
+ }
79
+ for result in unique_results
80
+ ]
81
+
82
+ return context
83
+ except Exception as e:
84
+ return [], f"Error searching documents: {str(e)}"
85
+
86
+ def rerank(query, context):
87
+ result = pc.inference.rerank(
88
+ model="bge-reranker-v2-m3",
89
+ query=query,
90
+ documents=context,
91
+ top_n=5,
92
+ return_documents=True,
93
+ )
94
+ return result
95
+
96
+ def generate_output(context, query):
97
+ try:
98
+ llm = ChatOpenAI(model="gpt-4", openai_api_key=openai.api_key, temperature=0.5)
99
+
100
+ if not context.strip():
101
+ return "I couldn't find relevant information for your query. Could you refine your question?"
102
+
103
+ prompt_template = PromptTemplate(
104
+ template="""Use the following document context to answer accurately:
105
+ Context: {context}
106
+ Question: {question}
107
+ If the answer is unclear, ask for clarification.
108
+ Answer:""",
109
+ input_variables=["context", "question"]
110
+ )
111
+
112
+ prompt = prompt_template.format(context=context, question=query)
113
+ response = llm([HumanMessage(content=prompt)]).content.strip()
114
+
115
+ return response if response else "No relevant answer found."
116
+
117
+ except Exception as e:
118
+ return f"Error generating output: {str(e)}"
119
+
120
+ def generate_search_summary(search_results, document_titles, query):
121
+ """
122
+ Generates an intelligent search summary based on retrieved documents.
123
+ """
124
+ try:
125
+ if not search_results:
126
+ return "No relevant documents were found for your search. Try refining your query."
127
+
128
+ # Extract metadata
129
+ num_results = len(document_titles)
130
+ doc_titles = [doc.get("title", "Unknown Document") for doc in search_results]
131
+ doc_pages = [doc.get("page_number", "N/A") for doc in search_results]
132
+ relevance_scores = [float(doc.get("score", 0)) for doc in search_results]
133
+
134
+ # Identify recency (to be implemented)
135
+ recency_info = ""
136
+ if "date_uploaded" in search_results[0]: # Assuming date is available
137
+ dates = [doc.get("date_uploaded", "Unknown") for doc in search_results]
138
+ recency_info = f"Most recent document uploaded on {max(dates)}."
139
+
140
+ # Identify common keywords
141
+ common_terms = set()
142
+ for doc in search_results:
143
+ text_snippet = doc.get("text", "").split()[:50] # Take first 50 words
144
+ common_terms.update(text_snippet)
145
+
146
+ summary_prompt = f"""
147
+ Generate a concise 1-3 sentence summary of the search results.
148
+ - User Query: "{query}"
149
+ - Matching Documents: {num_results} found
150
+ - Titles: {", ".join(set(doc_titles))}
151
+ - Pages Referenced: {", ".join(set(doc_pages))}
152
+ - Common Terms: {", ".join(list(common_terms)[:10])} (top terms)
153
+ - Recency: {recency_info}
154
+ - Relevance Scores (0-1): {relevance_scores}
155
+
156
+ Provide a clear, user-friendly summary with an action suggestion.
157
+ """
158
+
159
+ llm = ChatOpenAI(model="gpt-4", openai_api_key=openai.api_key, temperature=0.5)
160
+ summary = llm([HumanMessage(content=summary_prompt)]).content.strip()
161
+
162
+ return summary if summary else "No intelligent summary available."
163
+
164
+ except Exception as e:
165
+ return f"Error generating search summary: {str(e)}"
166
+
167
+ def complete_workflow(query, user_groups, index_name="briefmeta"):
168
+ try:
169
+ # Expand the query
170
+ refined_query = expand_query(query)
171
+
172
+ # Proceed with refined query instead of the original
173
+ context_data = search_documents(refined_query, user_groups)
174
+
175
+ reranked = rerank(refined_query, context_data)
176
+
177
+ context_data = []
178
+ for i, entry in enumerate(reranked.data):
179
+ context_data.append({
180
+ 'chunk_id': entry['document']['chunk_id'],
181
+ 'doc_id': entry['document']['doc_id'],
182
+ 'title': entry['document']['title'],
183
+ 'text': entry['document']['text'],
184
+ 'page_number': str(entry['document']['page_number']),
185
+ 'score': str(entry['score'])
186
+ })
187
+
188
+ document_titles = list({os.path.basename(doc["title"]) for doc in context_data})
189
+ formatted_titles = " " + "\n".join(document_titles)
190
+
191
+ total_results = len(context_data)
192
+
193
+ results = {
194
+ "results": [
195
+ {
196
+ "natural_language_output": generate_output(doc["text"], refined_query), # Use refined query
197
+ "chunk_id": doc["chunk_id"],
198
+ "document_id": doc["doc_id"],
199
+ "title": doc["title"],
200
+ "text": doc["text"],
201
+ "page_number": doc["page_number"],
202
+ "score": doc["score"],
203
+ }
204
+ for doc in context_data
205
+ ],
206
+ "total_results": total_results
207
+ }
208
+
209
+ return results, formatted_titles
210
+ except Exception as e:
211
+ return {"results": [], "total_results": 0}, f"Error in workflow: {str(e)}"
212
+
213
+ def gradio_app():
214
+ with gr.Blocks(css=".result-output {width: 150%; font-size: 16px; padding: 10px;}") as app:
215
+ gr.Markdown("### Intelligent Document Search Prototype-v0.2")
216
+
217
+ with gr.Row():
218
+ user_query = gr.Textbox(label=" Enter Search Query")
219
+ user_groups = gr.Textbox(label=" User Groups", placeholder="e.g., ['KarthikPersonal']", interactive=True)
220
+ index_name = gr.Textbox(label=" Index Name", placeholder="Default: briefmeta", interactive=True)
221
+ search_btn = gr.Button(" Search")
222
+
223
+ with gr.Row():
224
+ result_output = gr.JSON(label=" Search Results", elem_id="result-output")
225
+ with gr.Row():
226
+ titles_output = gr.Textbox(label=" Retrieved Document Titles", interactive=False)
227
+
228
+ search_btn.click(
229
+ complete_workflow,
230
+ inputs=[user_query, user_groups, index_name],
231
+ outputs=[result_output, titles_output]
232
+ )
233
+
234
+ return app
235
+
236
+
237
+ # Launch the app
238
+ gradio_app().launch()