File size: 9,097 Bytes
30d3882
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import os
from dotenv import load_dotenv
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.schema import HumanMessage
from langchain_openai import OpenAIEmbeddings
from langchain_voyageai import VoyageAIEmbeddings
from langchain_pinecone import PineconeVectorStore
from langchain_openai import ChatOpenAI
from langchain.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
from typing import List, Tuple
from langchain.schema import BaseRetriever
from langchain_core.documents import Document
from langchain_core.runnables import chain
from pinecone import Pinecone, ServerlessSpec 
import openai
import numpy as np
import gradio as gr

load_dotenv()

# Initialize OpenAI and Pinecone credentials
openai.api_key = os.environ.get("OPENAI_API_KEY")
pinecone_api_key = os.environ.get("PINECONE_API_KEY")
pinecone_environment = os.environ.get("PINECONE_ENV")
voyage_api_key = os.environ.get("VOYAGE_API_KEY")

# Initialize Pinecone
try:
    pc = Pinecone(api_key=pinecone_api_key)
except Exception as e:
        print(f"Error connecting to Pinecone: {str(e)}")

embeddings = VoyageAIEmbeddings(
    voyage_api_key=voyage_api_key, model="voyage-law-2"
)

def expand_query(query):
    """
    Expands the query to make it more precise using an LLM.
    Example: "docs" -> "Find all legal documents related to case law."
    """
    llm = ChatOpenAI(model="gpt-4", openai_api_key=openai.api_key, temperature=0.3)
    prompt = f"Rewrite the following vague search query into a more specific one:\nQuery: {query}\nSpecific Query:"
    
    refined_query = llm([HumanMessage(content=prompt)]).content.strip()
    
    return refined_query if refined_query else query
    
def search_documents(query, user_groups, index_name="briefmeta", min_score=0.01):
    try:
        vector_store = PineconeVectorStore(index_name=index_name, embedding=embeddings)
        
        results = vector_store.max_marginal_relevance_search(query, k=10, fetch_k=30)

        seen_ids = set()
        unique_results = []
        
        for result in results:
            unique_id = result.metadata.get("id")
            doc_groups = result.metadata.get("groups", [])  
            score = result.metadata.get("score", 0)

            # Apply user group filtering & score threshold
            if unique_id not in seen_ids and any(group in user_groups for group in doc_groups) and score > min_score:
                seen_ids.add(unique_id)
                unique_results.append(result)

        context = [
            {
                "doc_id": result.metadata.get("doc_id", "N/A"),
                "chunk_id": result.metadata.get("id", "N/A"),
                "title": result.metadata.get("source", "N/A"),
                "text": result.page_content,
                "page_number": str(result.metadata.get("page_number", "N/A")),
                "score": str(result.metadata.get("score", "N/A")),
            }
            for result in unique_results
        ]

        return context
    except Exception as e:
        return [], f"Error searching documents: {str(e)}"

def rerank(query, context):        
    result = pc.inference.rerank(
        model="bge-reranker-v2-m3",
        query=query,
        documents=context,
        top_n=5,
        return_documents=True,
    )
    return result

def generate_output(context, query):
    try:
        llm = ChatOpenAI(model="gpt-4", openai_api_key=openai.api_key, temperature=0.5)
        
        if not context.strip():
            return "I couldn't find relevant information for your query. Could you refine your question?"

        prompt_template = PromptTemplate(
            template="""Use the following document context to answer accurately:
            Context: {context}
            Question: {question}
            If the answer is unclear, ask for clarification.
            Answer:""",
            input_variables=["context", "question"]
        )
        
        prompt = prompt_template.format(context=context, question=query)
        response = llm([HumanMessage(content=prompt)]).content.strip()
        
        return response if response else "No relevant answer found."
    
    except Exception as e:
        return f"Error generating output: {str(e)}"

def generate_search_summary(search_results, document_titles, query):
    """
    Generates an intelligent search summary based on retrieved documents.
    """
    try:
        if not search_results:
            return "No relevant documents were found for your search. Try refining your query."

        # Extract metadata
        num_results = len(document_titles)
        doc_titles = [doc.get("title", "Unknown Document") for doc in search_results]
        doc_pages = [doc.get("page_number", "N/A") for doc in search_results]
        relevance_scores = [float(doc.get("score", 0)) for doc in search_results]

        # Identify recency (to be implemented)
        recency_info = ""
        if "date_uploaded" in search_results[0]:  # Assuming date is available
            dates = [doc.get("date_uploaded", "Unknown") for doc in search_results]
            recency_info = f"Most recent document uploaded on {max(dates)}."

        # Identify common keywords
        common_terms = set()
        for doc in search_results:
            text_snippet = doc.get("text", "").split()[:50]  # Take first 50 words
            common_terms.update(text_snippet)

        summary_prompt = f"""
        Generate a concise 1-3 sentence summary of the search results.
        - User Query: "{query}"
        - Matching Documents: {num_results} found
        - Titles: {", ".join(set(doc_titles))}
        - Pages Referenced: {", ".join(set(doc_pages))}
        - Common Terms: {", ".join(list(common_terms)[:10])} (top terms)
        - Recency: {recency_info}
        - Relevance Scores (0-1): {relevance_scores}

        Provide a clear, user-friendly summary with an action suggestion.
        """

        llm = ChatOpenAI(model="gpt-4", openai_api_key=openai.api_key, temperature=0.5)
        summary = llm([HumanMessage(content=summary_prompt)]).content.strip()

        return summary if summary else "No intelligent summary available."
    
    except Exception as e:
        return f"Error generating search summary: {str(e)}"

def complete_workflow(query, user_groups, index_name="briefmeta"):
    try:
        # Expand the query
        refined_query = expand_query(query)
        
        # Proceed with refined query instead of the original
        context_data = search_documents(refined_query, user_groups)

        reranked = rerank(refined_query, context_data)

        context_data = []
        for i, entry in enumerate(reranked.data):  
            context_data.append({
                'chunk_id': entry['document']['chunk_id'],
                'doc_id': entry['document']['doc_id'],
                'title': entry['document']['title'],
                'text': entry['document']['text'],
                'page_number': str(entry['document']['page_number']),
                'score': str(entry['score'])
            })

        document_titles = list({os.path.basename(doc["title"]) for doc in context_data})
        formatted_titles = " " + "\n".join(document_titles)

        total_results = len(context_data)

        results = {
            "results": [
                {
                    "natural_language_output": generate_output(doc["text"], refined_query),  # Use refined query
                    "chunk_id": doc["chunk_id"],
                    "document_id": doc["doc_id"],
                    "title": doc["title"],
                    "text": doc["text"],
                    "page_number": doc["page_number"],
                    "score": doc["score"],
                }
                for doc in context_data
            ],
            "total_results": total_results
        }

        return results, formatted_titles
    except Exception as e:
        return {"results": [], "total_results": 0}, f"Error in workflow: {str(e)}"

def gradio_app():
    with gr.Blocks(css=".result-output {width: 150%; font-size: 16px; padding: 10px;}") as app:
        gr.Markdown("### Intelligent Document Search Prototype-v0.2")

        with gr.Row():
            user_query = gr.Textbox(label=" Enter Search Query")
            user_groups = gr.Textbox(label=" User Groups", placeholder="e.g., ['KarthikPersonal']", interactive=True)
            index_name = gr.Textbox(label=" Index Name", placeholder="Default: briefmeta", interactive=True)
            search_btn = gr.Button(" Search")

        with gr.Row():
            result_output = gr.JSON(label=" Search Results", elem_id="result-output")
        with gr.Row():
            titles_output = gr.Textbox(label=" Retrieved Document Titles", interactive=False)

        search_btn.click(
            complete_workflow,
            inputs=[user_query, user_groups, index_name],
            outputs=[result_output, titles_output]
        )

    return app


# Launch the app
gradio_app().launch()