Spaces:
Running
Running
File size: 9,097 Bytes
30d3882 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
import os
from dotenv import load_dotenv
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.schema import HumanMessage
from langchain_openai import OpenAIEmbeddings
from langchain_voyageai import VoyageAIEmbeddings
from langchain_pinecone import PineconeVectorStore
from langchain_openai import ChatOpenAI
from langchain.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
from typing import List, Tuple
from langchain.schema import BaseRetriever
from langchain_core.documents import Document
from langchain_core.runnables import chain
from pinecone import Pinecone, ServerlessSpec
import openai
import numpy as np
import gradio as gr
load_dotenv()
# Initialize OpenAI and Pinecone credentials
openai.api_key = os.environ.get("OPENAI_API_KEY")
pinecone_api_key = os.environ.get("PINECONE_API_KEY")
pinecone_environment = os.environ.get("PINECONE_ENV")
voyage_api_key = os.environ.get("VOYAGE_API_KEY")
# Initialize Pinecone
try:
pc = Pinecone(api_key=pinecone_api_key)
except Exception as e:
print(f"Error connecting to Pinecone: {str(e)}")
embeddings = VoyageAIEmbeddings(
voyage_api_key=voyage_api_key, model="voyage-law-2"
)
def expand_query(query):
"""
Expands the query to make it more precise using an LLM.
Example: "docs" -> "Find all legal documents related to case law."
"""
llm = ChatOpenAI(model="gpt-4", openai_api_key=openai.api_key, temperature=0.3)
prompt = f"Rewrite the following vague search query into a more specific one:\nQuery: {query}\nSpecific Query:"
refined_query = llm([HumanMessage(content=prompt)]).content.strip()
return refined_query if refined_query else query
def search_documents(query, user_groups, index_name="briefmeta", min_score=0.01):
try:
vector_store = PineconeVectorStore(index_name=index_name, embedding=embeddings)
results = vector_store.max_marginal_relevance_search(query, k=10, fetch_k=30)
seen_ids = set()
unique_results = []
for result in results:
unique_id = result.metadata.get("id")
doc_groups = result.metadata.get("groups", [])
score = result.metadata.get("score", 0)
# Apply user group filtering & score threshold
if unique_id not in seen_ids and any(group in user_groups for group in doc_groups) and score > min_score:
seen_ids.add(unique_id)
unique_results.append(result)
context = [
{
"doc_id": result.metadata.get("doc_id", "N/A"),
"chunk_id": result.metadata.get("id", "N/A"),
"title": result.metadata.get("source", "N/A"),
"text": result.page_content,
"page_number": str(result.metadata.get("page_number", "N/A")),
"score": str(result.metadata.get("score", "N/A")),
}
for result in unique_results
]
return context
except Exception as e:
return [], f"Error searching documents: {str(e)}"
def rerank(query, context):
result = pc.inference.rerank(
model="bge-reranker-v2-m3",
query=query,
documents=context,
top_n=5,
return_documents=True,
)
return result
def generate_output(context, query):
try:
llm = ChatOpenAI(model="gpt-4", openai_api_key=openai.api_key, temperature=0.5)
if not context.strip():
return "I couldn't find relevant information for your query. Could you refine your question?"
prompt_template = PromptTemplate(
template="""Use the following document context to answer accurately:
Context: {context}
Question: {question}
If the answer is unclear, ask for clarification.
Answer:""",
input_variables=["context", "question"]
)
prompt = prompt_template.format(context=context, question=query)
response = llm([HumanMessage(content=prompt)]).content.strip()
return response if response else "No relevant answer found."
except Exception as e:
return f"Error generating output: {str(e)}"
def generate_search_summary(search_results, document_titles, query):
"""
Generates an intelligent search summary based on retrieved documents.
"""
try:
if not search_results:
return "No relevant documents were found for your search. Try refining your query."
# Extract metadata
num_results = len(document_titles)
doc_titles = [doc.get("title", "Unknown Document") for doc in search_results]
doc_pages = [doc.get("page_number", "N/A") for doc in search_results]
relevance_scores = [float(doc.get("score", 0)) for doc in search_results]
# Identify recency (to be implemented)
recency_info = ""
if "date_uploaded" in search_results[0]: # Assuming date is available
dates = [doc.get("date_uploaded", "Unknown") for doc in search_results]
recency_info = f"Most recent document uploaded on {max(dates)}."
# Identify common keywords
common_terms = set()
for doc in search_results:
text_snippet = doc.get("text", "").split()[:50] # Take first 50 words
common_terms.update(text_snippet)
summary_prompt = f"""
Generate a concise 1-3 sentence summary of the search results.
- User Query: "{query}"
- Matching Documents: {num_results} found
- Titles: {", ".join(set(doc_titles))}
- Pages Referenced: {", ".join(set(doc_pages))}
- Common Terms: {", ".join(list(common_terms)[:10])} (top terms)
- Recency: {recency_info}
- Relevance Scores (0-1): {relevance_scores}
Provide a clear, user-friendly summary with an action suggestion.
"""
llm = ChatOpenAI(model="gpt-4", openai_api_key=openai.api_key, temperature=0.5)
summary = llm([HumanMessage(content=summary_prompt)]).content.strip()
return summary if summary else "No intelligent summary available."
except Exception as e:
return f"Error generating search summary: {str(e)}"
def complete_workflow(query, user_groups, index_name="briefmeta"):
try:
# Expand the query
refined_query = expand_query(query)
# Proceed with refined query instead of the original
context_data = search_documents(refined_query, user_groups)
reranked = rerank(refined_query, context_data)
context_data = []
for i, entry in enumerate(reranked.data):
context_data.append({
'chunk_id': entry['document']['chunk_id'],
'doc_id': entry['document']['doc_id'],
'title': entry['document']['title'],
'text': entry['document']['text'],
'page_number': str(entry['document']['page_number']),
'score': str(entry['score'])
})
document_titles = list({os.path.basename(doc["title"]) for doc in context_data})
formatted_titles = " " + "\n".join(document_titles)
total_results = len(context_data)
results = {
"results": [
{
"natural_language_output": generate_output(doc["text"], refined_query), # Use refined query
"chunk_id": doc["chunk_id"],
"document_id": doc["doc_id"],
"title": doc["title"],
"text": doc["text"],
"page_number": doc["page_number"],
"score": doc["score"],
}
for doc in context_data
],
"total_results": total_results
}
return results, formatted_titles
except Exception as e:
return {"results": [], "total_results": 0}, f"Error in workflow: {str(e)}"
def gradio_app():
with gr.Blocks(css=".result-output {width: 150%; font-size: 16px; padding: 10px;}") as app:
gr.Markdown("### Intelligent Document Search Prototype-v0.2")
with gr.Row():
user_query = gr.Textbox(label=" Enter Search Query")
user_groups = gr.Textbox(label=" User Groups", placeholder="e.g., ['KarthikPersonal']", interactive=True)
index_name = gr.Textbox(label=" Index Name", placeholder="Default: briefmeta", interactive=True)
search_btn = gr.Button(" Search")
with gr.Row():
result_output = gr.JSON(label=" Search Results", elem_id="result-output")
with gr.Row():
titles_output = gr.Textbox(label=" Retrieved Document Titles", interactive=False)
search_btn.click(
complete_workflow,
inputs=[user_query, user_groups, index_name],
outputs=[result_output, titles_output]
)
return app
# Launch the app
gradio_app().launch() |