Spaces:
Running
Running
File size: 5,848 Bytes
0f7de99 2f2195a 874e761 465a95b 874e761 3eeaa4c 2f2195a 0f7de99 465a95b 874e761 fc18b54 ffacaaa 465a95b 874e761 cc861f0 0f7de99 465a95b 75b9622 465a95b 3c1039a 465a95b 0f7de99 465a95b 874e761 465a95b 65ef274 36159b1 465a95b 874e761 465a95b 874e761 465a95b 874e761 465a95b f3cd231 a48b15f b776365 35404bc b776365 c8f741c 238bffb 5d4059c 238bffb f3cd231 35404bc 238bffb 465a95b 1168f81 465a95b 5d4059c 465a95b 1168f81 32f9617 465a95b 2cee451 465a95b a48b15f 1168f81 5d4059c 1168f81 a48b15f ffacaaa cca1790 465a95b cca1790 465a95b cca1790 465a95b ffacaaa 465a95b cca1790 35404bc cca1790 36159b1 465a95b cca1790 35404bc 5d4059c 35404bc cca1790 465a95b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
import os
import gradio as gr
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from io import BytesIO
from PIL import Image
from datasets.exceptions import DatasetNotFoundError
from src.dataloading import get_leaderboard_models_cached, get_leaderboard_datasets
from src.similarity import load_data_and_compute_similarities
# Set matplotlib backend for non-GUI environments
plt.switch_backend('Agg')
def create_heatmap(selected_models, selected_dataset, selected_metric):
if not selected_models or not selected_dataset:
return None
# Sort models and get short names
selected_models = sorted(selected_models)
similarities = load_data_and_compute_similarities(selected_models, selected_dataset, selected_metric)
# Check if similarity matrix contains NaN rows
failed_models = []
for i in range(len(similarities)):
if np.isnan(similarities[i]).all():
failed_models.append(selected_models[i])
if failed_models:
raise gr.Error(f"Failed to load data for models: {', '.join(failed_models)}")
# Create figure and heatmap using seaborn
plt.figure(figsize=(8, 6))
ax = sns.heatmap(
similarities,
annot=True,
fmt=".2f",
cmap="viridis",
vmin=0,
vmax=1,
xticklabels=selected_models,
yticklabels=selected_models
)
# Customize plot
plt.title(f"{selected_metric} for {selected_dataset}", fontsize=16)
plt.xlabel("Models", fontsize=14)
plt.ylabel("Models", fontsize=14)
plt.xticks(rotation=45, ha='right')
plt.yticks(rotation=0)
plt.tight_layout()
# Save to buffer
buf = BytesIO()
plt.savefig(buf, format="png", dpi=100, bbox_inches="tight")
plt.close()
# Convert to PIL Image
buf.seek(0)
img = Image.open(buf).convert("RGB")
return img
def validate_inputs(selected_models, selected_dataset):
if not selected_models:
raise gr.Error("Please select at least one model!")
if not selected_dataset:
raise gr.Error("Please select a dataset!")
def update_datasets_based_on_models(selected_models, current_dataset):
try:
available_datasets = get_leaderboard_datasets(selected_models) if selected_models else []
valid_dataset = current_dataset if current_dataset in available_datasets else None
return gr.update(
choices=available_datasets,
value=valid_dataset
)
except DatasetNotFoundError as e:
# Extract model name from error message
model_name = e.args[0].split("'")[1]
model_name = model_name.split("/")[-1].replace("__", "/").replace("_details", "")
# Display a shorter warning
gr.Warning(f"Data for '{model_name}' is gated or unavailable.")
return gr.update(choices=[], value=None)
links_markdown = """
[📄 Paper](https://arxiv.org/abs/6181841) |
[☯ Homepage](https://model-similarity.github.io/) |
[🐱 Code](https://github.com/model-similarity/lm-similarity) |
[🐍 pip install lm-sim](https://pypi.org/project/lm-sim/) |
[🤗 Data](https://huggingface.co/datasets/bethgelab/lm-similarity)
"""
# Create Gradio interface
with gr.Blocks(title="LLM Similarity Analyzer") as demo:
gr.Markdown("## Model Similarity Comparison Tool")
gr.Markdown(links_markdown)
with gr.Row():
dataset_dropdown = gr.Dropdown(
choices=get_leaderboard_datasets(None),
label="Select Dataset",
value="mmlu_pro",
filterable=True,
interactive=True,
allow_custom_value=False,
info="Open LLM Leaderboard v2 benchmark datasets"
)
metric_dropdown = gr.Dropdown(
choices=["Kappa_p (prob.)", "Kappa_p (det.)", "Error Consistency"],
label="Select Metric",
info="Select a similarity metric to compute"
)
model_dropdown = gr.Dropdown(
choices=get_leaderboard_models_cached(),
label="Select Models",
value=["Qwen/Qwen2.5-"],
multiselect=True,
filterable=True,
allow_custom_value=False,
info="Search and select multiple models"
)
model_dropdown.change(
fn=update_datasets_based_on_models,
inputs=[model_dropdown, dataset_dropdown],
outputs=dataset_dropdown
)
generate_btn = gr.Button("Generate Heatmap", variant="primary")
heatmap = gr.Image(label="Similarity Heatmap", visible=True)
generate_btn.click(
fn=validate_inputs,
inputs=[model_dropdown, dataset_dropdown],
queue=False
).then(
fn=create_heatmap,
inputs=[model_dropdown, dataset_dropdown, metric_dropdown],
outputs=heatmap
)
gr.Markdown("\* Self-similarity is only 1.0 for the probabilistic Kappa_p metric if the model predicts a single option with 100% confidence for each question.")
clear_btn = gr.Button("Clear Selection")
clear_btn.click(
lambda: [[], None, None],
outputs=[model_dropdown, dataset_dropdown, heatmap]
)
gr.Markdown("""### Information \n
- **Datasets**: [Open LLM Leaderboard v2](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/) benchmark datasets \n
- Some datasets are not multiple-choice - for these, the metrics are not applicable. \n
- **Models**: Open LLM Leaderboard models \n
- Every model evaluation is gated on Hugging Face and access has to be requested. \n
- We requested access for the most popular models, but some may be missing. \n
- **Metrics**: Kappa_p (probabilistic), Kappa_p (deterministic), Error Consistency""")
if __name__ == "__main__":
demo.launch(ssr_mode=False) |