File size: 4,024 Bytes
0f7de99
2f2195a
874e761
465a95b
 
874e761
 
fc18b54
2f2195a
0f7de99
 
 
465a95b
 
874e761
fc18b54
0f7de99
 
fc18b54
 
ffacaaa
465a95b
 
874e761
cc861f0
 
36159b1
0f7de99
465a95b
 
3c1039a
465a95b
 
 
 
 
 
 
0f7de99
 
465a95b
874e761
465a95b
3c1039a
36159b1
 
465a95b
 
 
 
 
874e761
465a95b
 
874e761
465a95b
874e761
 
 
 
465a95b
 
 
f3cd231
 
a48b15f
 
 
 
 
 
 
 
 
 
 
 
 
c8f741c
f3cd231
 
4adb140
465a95b
 
1168f81
465a95b
 
 
1168f81
32f9617
465a95b
2cee451
 
 
 
465a95b
a48b15f
1168f81
 
 
 
 
 
 
 
 
a48b15f
 
 
 
ffacaaa
cca1790
465a95b
 
cca1790
 
 
465a95b
cca1790
 
465a95b
ffacaaa
465a95b
cca1790
 
 
 
36159b1
465a95b
cca1790
 
 
465a95b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import os
import gradio as gr
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from io import BytesIO
from PIL import Image
from huggingface_hub import login

from src.dataloading import get_leaderboard_models_cached, get_leaderboard_datasets
from src.similarity import load_data_and_compute_similarities

# Set matplotlib backend for non-GUI environments
plt.switch_backend('Agg')

# Login to Hugging Face Hub
token = os.getenv("HF_TOKEN")
login(token=token)


def create_heatmap(selected_models, selected_dataset, selected_metric):
    if not selected_models or not selected_dataset:
        return None
    
    # Sort models and get short names
    selected_models = sorted(selected_models)
    
    similarities = load_data_and_compute_similarities(selected_models, selected_dataset, selected_metric)

    # Create figure and heatmap using seaborn
    plt.figure(figsize=(8, 6))
    ax = sns.heatmap(
        similarities,
        annot=True,
        fmt=".2f",
        cmap="viridis",
        vmin=0,
        vmax=1,
        xticklabels=selected_models,
        yticklabels=selected_models
    )
    
    # Customize plot
    plt.title(f"{selected_metric} Similarities for {selected_dataset}", fontsize=16)
    plt.xlabel("Models", fontsize=14)
    plt.ylabel("Models", fontsize=14)
    plt.xticks(rotation=45, ha='right')
    plt.yticks(rotation=0)
    plt.tight_layout()

    # Save to buffer
    buf = BytesIO()
    plt.savefig(buf, format="png", dpi=100, bbox_inches="tight")
    plt.close()
    
    # Convert to PIL Image
    buf.seek(0)
    img = Image.open(buf).convert("RGB")
    return img

def validate_inputs(selected_models, selected_dataset):
    if not selected_models:
        raise gr.Error("Please select at least one model!")
    if not selected_dataset:
        raise gr.Error("Please select a dataset!")
    

def update_datasets_based_on_models(selected_models, current_dataset):
    # Get available datasets for selected models
    available_datasets = get_leaderboard_datasets(selected_models) if selected_models else []
    
    # Check if current dataset is still valid
    valid_dataset = current_dataset if current_dataset in available_datasets else None
    
    return gr.Dropdown.update(
        choices=available_datasets,
        value=valid_dataset
    )

with gr.Blocks(title="LLM Similarity Analyzer") as demo:
    gr.Markdown("## Model Similarity Comparison Tool")
    
    with gr.Row():
        dataset_dropdown = gr.Dropdown(
            choices=get_leaderboard_datasets(None),
            label="Select Dataset",
            filterable=True,
            interactive=True,
            allow_custom_value=False,
            info="Open LLM Leaderboard v2 benchmark datasets"
        )
        metric_dropdown = gr.Dropdown(
            choices=["Kappa_p (prob.)", "Kappa_p (det.)", "Error Consistency"],
            label="Select Metric",
            info="Select a similarity metric to compute"
        )

    model_dropdown = gr.Dropdown(
        choices=get_leaderboard_models_cached(),
        label="Select Models",
        multiselect=True,
        filterable=True,
        allow_custom_value=False,
        info="Search and select multiple models"
    )

    model_dropdown.change(
        fn=update_datasets_based_on_models,
        inputs=[model_dropdown, dataset_dropdown],
        outputs=dataset_dropdown
    )
    
    generate_btn = gr.Button("Generate Heatmap", variant="primary")
    heatmap = gr.Image(label="Similarity Heatmap", visible=True)
    
    generate_btn.click(
        fn=validate_inputs,
        inputs=[model_dropdown, dataset_dropdown],
        queue=False
    ).then(
        fn=create_heatmap,
        inputs=[model_dropdown, dataset_dropdown, metric_dropdown],
        outputs=heatmap
    )
    
    clear_btn = gr.Button("Clear Selection")
    clear_btn.click(
        lambda: [[], None, None],
        outputs=[model_dropdown, dataset_dropdown, heatmap]
    )

if __name__ == "__main__":
    demo.launch(ssr_mode=False)