Spaces:
Sleeping
Sleeping
import os | |
from datetime import datetime | |
import uuid | |
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import torch | |
from huggingface_hub import login | |
from dotenv import load_dotenv | |
# Load environment variables | |
load_dotenv() | |
# Authenticate with Hugging Face | |
login(token=os.getenv("HUGGINGFACE_TOKEN")) | |
# Load model and tokenizer | |
model_name = "meta-llama/Meta-Llama-3.1-8B-Instruct" | |
tokenizer = AutoTokenizer.from_pretrained(model_name, token=True) | |
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto", token=True) | |
# Set pad_token_id if it's not already set | |
if tokenizer.pad_token_id is None: | |
tokenizer.pad_token_id = tokenizer.eos_token_id | |
def chat_with_model(messages): | |
# Prepare the input | |
input_ids = tokenizer.encode(str(messages), return_tensors="pt").to(model.device) | |
attention_mask = torch.ones_like(input_ids) | |
# Generate response | |
with torch.no_grad(): | |
output = model.generate( | |
input_ids, | |
attention_mask=attention_mask, | |
max_length=1000, | |
num_return_sequences=1, | |
temperature=0.7, | |
pad_token_id=tokenizer.pad_token_id | |
) | |
response = tokenizer.decode(output[0], skip_special_tokens=True) | |
return response | |
def chat_with_model_gradio(message, history, session_id): | |
messages = [ | |
{"role": "system", "content": f"λμ μ΄λ¦μ ChatMBTI. μ¬λλ€μ MBTIμ νμ μλ§μ μλ΄μ μ§νν μ μμ΄. μλλ°©μ MBTI μ νμ λ¨Όμ λ¬Όμ΄λ³΄κ³ , κ·Έ μ νμ μλ§κ² μλ΄μ μ§νν΄μ€. μ°Έκ³ λ‘ νμ¬ μκ°μ {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}μ΄μΌ."}, | |
] | |
messages.extend([{"role": "user" if i % 2 == 0 else "assistant", "content": m} for i, m in enumerate(history)]) | |
messages.append({"role": "user", "content": message}) | |
response = chat_with_model(messages) | |
history.append((message, response)) | |
return "", history | |
def main(): | |
session_id = str(uuid.uuid4()) | |
with gr.Blocks() as demo: | |
chatbot = gr.Chatbot(label="ChatMBTI") | |
msg = gr.Textbox(label="λ©μμ§λ₯Ό μ λ ₯νμΈμ") | |
clear = gr.Button("λν μ΄κΈ°ν") | |
msg.submit(chat_with_model_gradio, [msg, chatbot, gr.State(session_id)], [msg, chatbot]) | |
clear.click(lambda: None, None, chatbot, queue=False) | |
demo.launch() | |
if __name__ == "__main__": | |
main() |