import os from datetime import datetime import uuid import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM import torch from huggingface_hub import login from dotenv import load_dotenv # Load environment variables load_dotenv() # Authenticate with Hugging Face login(token=os.getenv("HUGGINGFACE_TOKEN")) # Load model and tokenizer model_name = "meta-llama/Meta-Llama-3.1-8B-Instruct" tokenizer = AutoTokenizer.from_pretrained(model_name, token=True) model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto", token=True) # Set pad_token_id if it's not already set if tokenizer.pad_token_id is None: tokenizer.pad_token_id = tokenizer.eos_token_id def chat_with_model(messages): # Prepare the input input_ids = tokenizer.encode(str(messages), return_tensors="pt").to(model.device) attention_mask = torch.ones_like(input_ids) # Generate response with torch.no_grad(): output = model.generate( input_ids, attention_mask=attention_mask, max_length=1000, num_return_sequences=1, temperature=0.7, pad_token_id=tokenizer.pad_token_id ) response = tokenizer.decode(output[0], skip_special_tokens=True) return response def chat_with_model_gradio(message, history, session_id): messages = [ {"role": "system", "content": f"너의 이름은 ChatMBTI. 사람들의 MBTI유형에 알맞은 상담을 진행할 수 있어. 상대방의 MBTI 유형을 먼저 물어보고, 그 유형에 알맞게 상담을 진행해줘. 참고로 현재 시각은 {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}이야."}, ] messages.extend([{"role": "user" if i % 2 == 0 else "assistant", "content": m} for i, m in enumerate(history)]) messages.append({"role": "user", "content": message}) response = chat_with_model(messages) history.append((message, response)) return "", history def main(): session_id = str(uuid.uuid4()) with gr.Blocks() as demo: chatbot = gr.Chatbot(label="ChatMBTI") msg = gr.Textbox(label="메시지를 입력하세요") clear = gr.Button("대화 초기화") msg.submit(chat_with_model_gradio, [msg, chatbot, gr.State(session_id)], [msg, chatbot]) clear.click(lambda: None, None, chatbot, queue=False) demo.launch() if __name__ == "__main__": main()