Spaces:
Sleeping
Sleeping
Commit
Β·
37e7b97
1
Parent(s):
461910a
which model would work?
Browse files
app.py
CHANGED
|
@@ -2,67 +2,58 @@ import os
|
|
| 2 |
from datetime import datetime
|
| 3 |
import uuid
|
| 4 |
import gradio as gr
|
| 5 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 6 |
import torch
|
| 7 |
from huggingface_hub import login
|
| 8 |
-
from threading import Thread
|
| 9 |
|
| 10 |
from dotenv import load_dotenv
|
| 11 |
-
|
| 12 |
# Load environment variables
|
| 13 |
load_dotenv()
|
| 14 |
|
| 15 |
-
#
|
| 16 |
-
|
| 17 |
|
| 18 |
# Load model and tokenizer
|
| 19 |
-
model_name = "
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
torch_dtype=torch.float16,
|
| 25 |
-
device_map="auto",
|
| 26 |
-
token=hf_token
|
| 27 |
-
)
|
| 28 |
|
| 29 |
def chat_with_model(messages):
|
| 30 |
# Prepare the input
|
| 31 |
-
|
| 32 |
-
|
| 33 |
|
| 34 |
# Generate response
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
return streamer
|
| 48 |
|
| 49 |
def chat_with_model_gradio(message, history, session_id):
|
| 50 |
-
system_message = f"λμ μ΄λ¦μ ChatMBTI. μ¬λλ€μ MBTIμ νμ μλ§μ μλ΄μ μ§νν μ μμ΄. μλλ°©μ MBTI μ νμ λ¨Όμ λ¬Όμ΄λ³΄κ³ , κ·Έ μ νμ μλ§κ² μλ΄μ μ§νν΄μ€. μ°Έκ³ λ‘ νμ¬ μκ°μ {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}μ΄μΌ."
|
| 51 |
-
|
| 52 |
messages = [
|
| 53 |
-
|
| 54 |
-
{"role": "user", "content": system_message},
|
| 55 |
-
{"role": "assistant", "content": "μλ
νμΈμ? ChatMBTIμ
λλ€. μ€λ ν루 μ΄λ μ
¨λμ?"},
|
| 56 |
]
|
| 57 |
-
messages.extend([{"role": "user" if i % 2 == 0 else "assistant", "content": m} for i,
|
| 58 |
messages.append({"role": "user", "content": message})
|
| 59 |
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
partial_message += new_token
|
| 65 |
-
yield "", history + [(message, partial_message)]
|
| 66 |
|
| 67 |
def main():
|
| 68 |
session_id = str(uuid.uuid4())
|
|
@@ -74,8 +65,7 @@ def main():
|
|
| 74 |
msg.submit(chat_with_model_gradio, [msg, chatbot, gr.State(session_id)], [msg, chatbot])
|
| 75 |
clear.click(lambda: None, None, chatbot, queue=False)
|
| 76 |
|
| 77 |
-
demo.queue()
|
| 78 |
demo.launch()
|
| 79 |
|
| 80 |
if __name__ == "__main__":
|
| 81 |
-
main()
|
|
|
|
| 2 |
from datetime import datetime
|
| 3 |
import uuid
|
| 4 |
import gradio as gr
|
| 5 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 6 |
import torch
|
| 7 |
from huggingface_hub import login
|
|
|
|
| 8 |
|
| 9 |
from dotenv import load_dotenv
|
|
|
|
| 10 |
# Load environment variables
|
| 11 |
load_dotenv()
|
| 12 |
|
| 13 |
+
# Authenticate with Hugging Face
|
| 14 |
+
login(token=os.getenv("HUGGINGFACE_TOKEN"))
|
| 15 |
|
| 16 |
# Load model and tokenizer
|
| 17 |
+
model_name = "meta-llama/Meta-Llama-3.1-8B-Instruct"
|
| 18 |
+
|
| 19 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, token=True)
|
| 20 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto", token=True)
|
| 21 |
+
|
| 22 |
|
| 23 |
+
# Set pad_token_id if it's not already set
|
| 24 |
+
if tokenizer.pad_token_id is None:
|
| 25 |
+
tokenizer.pad_token_id = tokenizer.eos_token_id
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
def chat_with_model(messages):
|
| 28 |
# Prepare the input
|
| 29 |
+
input_ids = tokenizer.encode(str(messages), return_tensors="pt").to(model.device)
|
| 30 |
+
attention_mask = torch.ones_like(input_ids)
|
| 31 |
|
| 32 |
# Generate response
|
| 33 |
+
with torch.no_grad():
|
| 34 |
+
output = model.generate(
|
| 35 |
+
input_ids,
|
| 36 |
+
attention_mask=attention_mask,
|
| 37 |
+
max_length=1000,
|
| 38 |
+
num_return_sequences=1,
|
| 39 |
+
temperature=0.7,
|
| 40 |
+
pad_token_id=tokenizer.pad_token_id
|
| 41 |
+
)
|
| 42 |
+
|
| 43 |
+
response = tokenizer.decode(output[0], skip_special_tokens=True)
|
| 44 |
+
return response
|
|
|
|
| 45 |
|
| 46 |
def chat_with_model_gradio(message, history, session_id):
|
|
|
|
|
|
|
| 47 |
messages = [
|
| 48 |
+
{"role": "system", "content": f"λμ μ΄λ¦μ ChatMBTI. μ¬λλ€μ MBTIμ νμ μλ§μ μλ΄μ μ§νν μ μμ΄. μλλ°©μ MBTI μ νμ λ¨Όμ λ¬Όμ΄λ³΄κ³ , κ·Έ μ νμ μλ§κ² μλ΄μ μ§νν΄μ€. μ°Έκ³ λ‘ νμ¬ μκ°μ {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}μ΄μΌ."},
|
|
|
|
|
|
|
| 49 |
]
|
| 50 |
+
messages.extend([{"role": "user" if i % 2 == 0 else "assistant", "content": m} for i, m in enumerate(history)])
|
| 51 |
messages.append({"role": "user", "content": message})
|
| 52 |
|
| 53 |
+
response = chat_with_model(messages)
|
| 54 |
+
history.append((message, response))
|
| 55 |
+
|
| 56 |
+
return "", history
|
|
|
|
|
|
|
| 57 |
|
| 58 |
def main():
|
| 59 |
session_id = str(uuid.uuid4())
|
|
|
|
| 65 |
msg.submit(chat_with_model_gradio, [msg, chatbot, gr.State(session_id)], [msg, chatbot])
|
| 66 |
clear.click(lambda: None, None, chatbot, queue=False)
|
| 67 |
|
|
|
|
| 68 |
demo.launch()
|
| 69 |
|
| 70 |
if __name__ == "__main__":
|
| 71 |
+
main()
|