Spaces:
Sleeping
Sleeping
Commit
Β·
37e7b97
1
Parent(s):
461910a
which model would work?
Browse files
app.py
CHANGED
@@ -2,67 +2,58 @@ import os
|
|
2 |
from datetime import datetime
|
3 |
import uuid
|
4 |
import gradio as gr
|
5 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
6 |
import torch
|
7 |
from huggingface_hub import login
|
8 |
-
from threading import Thread
|
9 |
|
10 |
from dotenv import load_dotenv
|
11 |
-
|
12 |
# Load environment variables
|
13 |
load_dotenv()
|
14 |
|
15 |
-
#
|
16 |
-
|
17 |
|
18 |
# Load model and tokenizer
|
19 |
-
model_name = "
|
|
|
|
|
|
|
|
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
torch_dtype=torch.float16,
|
25 |
-
device_map="auto",
|
26 |
-
token=hf_token
|
27 |
-
)
|
28 |
|
29 |
def chat_with_model(messages):
|
30 |
# Prepare the input
|
31 |
-
|
32 |
-
|
33 |
|
34 |
# Generate response
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
return streamer
|
48 |
|
49 |
def chat_with_model_gradio(message, history, session_id):
|
50 |
-
system_message = f"λμ μ΄λ¦μ ChatMBTI. μ¬λλ€μ MBTIμ νμ μλ§μ μλ΄μ μ§νν μ μμ΄. μλλ°©μ MBTI μ νμ λ¨Όμ λ¬Όμ΄λ³΄κ³ , κ·Έ μ νμ μλ§κ² μλ΄μ μ§νν΄μ€. μ°Έκ³ λ‘ νμ¬ μκ°μ {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}μ΄μΌ."
|
51 |
-
|
52 |
messages = [
|
53 |
-
|
54 |
-
{"role": "user", "content": system_message},
|
55 |
-
{"role": "assistant", "content": "μλ
νμΈμ? ChatMBTIμ
λλ€. μ€λ ν루 μ΄λ μ
¨λμ?"},
|
56 |
]
|
57 |
-
messages.extend([{"role": "user" if i % 2 == 0 else "assistant", "content": m} for i,
|
58 |
messages.append({"role": "user", "content": message})
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
partial_message += new_token
|
65 |
-
yield "", history + [(message, partial_message)]
|
66 |
|
67 |
def main():
|
68 |
session_id = str(uuid.uuid4())
|
@@ -74,8 +65,7 @@ def main():
|
|
74 |
msg.submit(chat_with_model_gradio, [msg, chatbot, gr.State(session_id)], [msg, chatbot])
|
75 |
clear.click(lambda: None, None, chatbot, queue=False)
|
76 |
|
77 |
-
demo.queue()
|
78 |
demo.launch()
|
79 |
|
80 |
if __name__ == "__main__":
|
81 |
-
main()
|
|
|
2 |
from datetime import datetime
|
3 |
import uuid
|
4 |
import gradio as gr
|
5 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
6 |
import torch
|
7 |
from huggingface_hub import login
|
|
|
8 |
|
9 |
from dotenv import load_dotenv
|
|
|
10 |
# Load environment variables
|
11 |
load_dotenv()
|
12 |
|
13 |
+
# Authenticate with Hugging Face
|
14 |
+
login(token=os.getenv("HUGGINGFACE_TOKEN"))
|
15 |
|
16 |
# Load model and tokenizer
|
17 |
+
model_name = "meta-llama/Meta-Llama-3.1-8B-Instruct"
|
18 |
+
|
19 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, token=True)
|
20 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto", token=True)
|
21 |
+
|
22 |
|
23 |
+
# Set pad_token_id if it's not already set
|
24 |
+
if tokenizer.pad_token_id is None:
|
25 |
+
tokenizer.pad_token_id = tokenizer.eos_token_id
|
|
|
|
|
|
|
|
|
26 |
|
27 |
def chat_with_model(messages):
|
28 |
# Prepare the input
|
29 |
+
input_ids = tokenizer.encode(str(messages), return_tensors="pt").to(model.device)
|
30 |
+
attention_mask = torch.ones_like(input_ids)
|
31 |
|
32 |
# Generate response
|
33 |
+
with torch.no_grad():
|
34 |
+
output = model.generate(
|
35 |
+
input_ids,
|
36 |
+
attention_mask=attention_mask,
|
37 |
+
max_length=1000,
|
38 |
+
num_return_sequences=1,
|
39 |
+
temperature=0.7,
|
40 |
+
pad_token_id=tokenizer.pad_token_id
|
41 |
+
)
|
42 |
+
|
43 |
+
response = tokenizer.decode(output[0], skip_special_tokens=True)
|
44 |
+
return response
|
|
|
45 |
|
46 |
def chat_with_model_gradio(message, history, session_id):
|
|
|
|
|
47 |
messages = [
|
48 |
+
{"role": "system", "content": f"λμ μ΄λ¦μ ChatMBTI. μ¬λλ€μ MBTIμ νμ μλ§μ μλ΄μ μ§νν μ μμ΄. μλλ°©μ MBTI μ νμ λ¨Όμ λ¬Όμ΄λ³΄κ³ , κ·Έ μ νμ μλ§κ² μλ΄μ μ§νν΄μ€. μ°Έκ³ λ‘ νμ¬ μκ°μ {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}μ΄μΌ."},
|
|
|
|
|
49 |
]
|
50 |
+
messages.extend([{"role": "user" if i % 2 == 0 else "assistant", "content": m} for i, m in enumerate(history)])
|
51 |
messages.append({"role": "user", "content": message})
|
52 |
|
53 |
+
response = chat_with_model(messages)
|
54 |
+
history.append((message, response))
|
55 |
+
|
56 |
+
return "", history
|
|
|
|
|
57 |
|
58 |
def main():
|
59 |
session_id = str(uuid.uuid4())
|
|
|
65 |
msg.submit(chat_with_model_gradio, [msg, chatbot, gr.State(session_id)], [msg, chatbot])
|
66 |
clear.click(lambda: None, None, chatbot, queue=False)
|
67 |
|
|
|
68 |
demo.launch()
|
69 |
|
70 |
if __name__ == "__main__":
|
71 |
+
main()
|