File size: 6,856 Bytes
5f42812 abf26d0 5f42812 0820857 b841197 5f42812 426a08c 0820857 426a08c 5f42812 b841197 24c2f62 5f42812 24c2f62 f5765c8 5f42812 b841197 c0d1640 b75046f c0d1640 5f42812 0820857 c0d1640 0820857 c0d1640 0820857 c0d1640 0820857 24c2f62 abf26d0 0820857 5f42812 0820857 b841197 9a80e6e d200533 0820857 9a80e6e b841197 9a80e6e 0820857 9a80e6e b841197 0820857 c0d1640 b841197 c0d1640 b841197 0820857 b841197 0820857 b841197 0820857 b841197 0820857 9a80e6e b841197 0820857 5f42812 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
import torch
from transformers import AutoProcessor, AutoModelForImageTextToText
from typing import List, Dict
import logging
import os
import subprocess
import json
import tempfile
import time
logger = logging.getLogger(__name__)
def _grab_best_device(use_gpu=True):
if torch.cuda.device_count() > 0 and use_gpu:
device = "cuda"
else:
device = "cpu"
return device
def get_video_duration_seconds(video_path: str) -> float:
"""Use ffprobe to get video duration in seconds."""
cmd = [
"ffprobe",
"-v", "quiet",
"-print_format", "json",
"-show_format",
video_path
]
result = subprocess.run(cmd, capture_output=True, text=True)
info = json.loads(result.stdout)
return float(info["format"]["duration"])
def format_duration(seconds: int) -> str:
minutes = seconds // 60
secs = seconds % 60
return f"{minutes:02d}:{secs:02d}"
DEVICE = _grab_best_device()
logger.info(f"Using device: {DEVICE}")
class VideoAnalyzer:
def __init__(self):
if not torch.cuda.is_available():
raise RuntimeError("CUDA is required but not available!")
logger.info("Initializing VideoAnalyzer")
self.model_path = "HuggingFaceTB/SmolVLM2-500M-Video-Instruct"
logger.info(f"Loading model from {self.model_path} - Using device: {DEVICE}")
# Load processor and model
self.processor = AutoProcessor.from_pretrained(self.model_path)
self.model = AutoModelForImageTextToText.from_pretrained(
self.model_path,
torch_dtype=torch.bfloat16,
device_map=DEVICE,
_attn_implementation="flash_attention_2",
low_cpu_mem_usage=True,
).to(DEVICE)
# Compile model for faster inference
self.model = torch.compile(self.model, mode="reduce-overhead")
logger.info(f"Model loaded and compiled on device: {self.model.device}")
def analyze_segment(self, video_path: str, start_time: float) -> str:
"""Analyze a single video segment."""
messages = [
{
"role": "system",
"content": [{"type": "text", "text": """You are a detailed video analysis assistant. Analyze and describe:
1. People: their appearance, actions, and interactions
2. Environment: location, weather, time of day, lighting
3. Objects: key items, their positions and movements
4. Text: any visible text, signs, or captions
5. Events: what is happening in sequence
6. Visual details: colors, patterns, visual effects
Be specific about timing and details to enable searching through the video later."""}]
},
{
"role": "user",
"content": [
{"type": "video", "path": video_path},
{"type": "text", "text": """Describe this segment comprehensively. Include:
- Who appears and what are they doing?
- What is the environment and weather like?
- What objects or items are visible?
- Is there any text visible on screen?
- What actions or events are occurring?
- Note any significant visual details
Be specific about all visual elements to enable searching later."""}
]
}
]
inputs = self.processor.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt"
).to(DEVICE, dtype=torch.bfloat16)
with torch.inference_mode():
outputs = self.model.generate(
**inputs,
do_sample=False,
temperature=0.7,
max_new_tokens=256,
)
return self.processor.batch_decode(outputs, skip_special_tokens=True)[0].split("Assistant: ")[-1]
def process_video(self, video_path: str, segment_length: int = 10) -> List[Dict]:
try:
# Create temp directory for segments
temp_dir = tempfile.mkdtemp()
# Get video duration
duration = get_video_duration_seconds(video_path)
total_segments = (int(duration) + segment_length - 1) // segment_length
logger.info(f"Processing {total_segments} segments for video of length {duration:.2f} seconds")
# Process video in segments
for segment_idx in range(total_segments):
segment_start_time = time.time()
start_time = segment_idx * segment_length
end_time = min(start_time + segment_length, duration)
# Skip if we've reached the end
if start_time >= duration:
break
# Create segment - Optimized ffmpeg settings
segment_path = os.path.join(temp_dir, f"segment_{start_time}.mp4")
cmd = [
"ffmpeg",
"-y",
"-i", video_path,
"-ss", str(start_time),
"-t", str(segment_length),
"-c:v", "libx264",
"-preset", "ultrafast", # Use ultrafast preset for speed
"-pix_fmt", "yuv420p", # Ensure compatible pixel format
segment_path
]
ffmpeg_start = time.time()
subprocess.run(cmd, check=True)
ffmpeg_time = time.time() - ffmpeg_start
# Analyze segment
inference_start = time.time()
description = self.analyze_segment(segment_path, start_time)
inference_time = time.time() - inference_start
# Add segment info with timestamp
yield {
"timestamp": format_duration(int(start_time)),
"description": description,
"processing_times": {
"ffmpeg": ffmpeg_time,
"inference": inference_time,
"total": time.time() - segment_start_time
}
}
# Clean up segment file
os.remove(segment_path)
logger.info(
f"Segment {segment_idx + 1}/{total_segments} ({start_time}-{end_time}s) - "
f"FFmpeg: {ffmpeg_time:.2f}s, Inference: {inference_time:.2f}s"
)
# Clean up temp directory
os.rmdir(temp_dir)
except Exception as e:
logger.error(f"Error processing video: {str(e)}", exc_info=True)
raise |