youssef
commited on
Commit
·
0820857
1
Parent(s):
fb1b414
test
Browse files- src/app.py +19 -5
- src/video_processor/processor.py +106 -50
src/app.py
CHANGED
@@ -50,11 +50,25 @@ def on_process(video):
|
|
50 |
]
|
51 |
|
52 |
logger.info(f"Processing video: {video}")
|
53 |
-
|
54 |
-
|
|
|
55 |
|
56 |
-
#
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
yield [
|
60 |
"Processing complete!",
|
@@ -76,7 +90,7 @@ def on_process(video):
|
|
76 |
# Create Gradio interface
|
77 |
with gr.Blocks() as demo:
|
78 |
gr.Markdown("# SmolVLM Video Analyzer")
|
79 |
-
gr.Markdown("Upload a video to get a detailed analysis of its content.")
|
80 |
|
81 |
with gr.Row():
|
82 |
with gr.Column(scale=1):
|
|
|
50 |
]
|
51 |
|
52 |
logger.info(f"Processing video: {video}")
|
53 |
+
segments = []
|
54 |
+
duration = analyzer.get_video_duration_seconds(video)
|
55 |
+
total_segments = int(duration / 10) # Using default 10-second segments
|
56 |
|
57 |
+
# Process video segments
|
58 |
+
for i, segment in enumerate(analyzer.process_video(video)):
|
59 |
+
segments.append(segment)
|
60 |
+
progress = int((i + 1) / total_segments * 100)
|
61 |
+
|
62 |
+
# Format current segments
|
63 |
+
formatted_desc = "### Video Analysis by Segments:\n\n"
|
64 |
+
for seg in segments:
|
65 |
+
formatted_desc += f"**[{seg['timestamp']}]** {seg['description']}\n\n"
|
66 |
+
|
67 |
+
yield [
|
68 |
+
f"Processing segments... {progress}% complete",
|
69 |
+
formatted_desc,
|
70 |
+
gr.update(visible=True)
|
71 |
+
]
|
72 |
|
73 |
yield [
|
74 |
"Processing complete!",
|
|
|
90 |
# Create Gradio interface
|
91 |
with gr.Blocks() as demo:
|
92 |
gr.Markdown("# SmolVLM Video Analyzer")
|
93 |
+
gr.Markdown("Upload a video to get a detailed analysis of its content, split into segments with timestamps.")
|
94 |
|
95 |
with gr.Row():
|
96 |
with gr.Column(scale=1):
|
src/video_processor/processor.py
CHANGED
@@ -2,6 +2,10 @@ import torch
|
|
2 |
from transformers import AutoProcessor, AutoModelForImageTextToText
|
3 |
from typing import List, Dict
|
4 |
import logging
|
|
|
|
|
|
|
|
|
5 |
|
6 |
logger = logging.getLogger(__name__)
|
7 |
|
@@ -12,6 +16,24 @@ def _grab_best_device(use_gpu=True):
|
|
12 |
device = "cpu"
|
13 |
return device
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
DEVICE = _grab_best_device()
|
16 |
|
17 |
logger.info(f"Using device: {DEVICE}")
|
@@ -35,60 +57,94 @@ class VideoAnalyzer:
|
|
35 |
).to(DEVICE)
|
36 |
logger.info(f"Model loaded on device: {self.model.device}")
|
37 |
|
38 |
-
def
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
{
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
"
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
-
|
|
|
|
|
|
|
|
|
62 |
|
63 |
-
#
|
64 |
-
|
65 |
-
messages,
|
66 |
-
add_generation_prompt=True,
|
67 |
-
tokenize=True,
|
68 |
-
return_dict=True,
|
69 |
-
return_tensors="pt"
|
70 |
-
).to(DEVICE, dtype=torch.bfloat16)
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
-
return
|
90 |
-
"description": description.split("Assistant: ")[-1] # Remove assistant prefix if present
|
91 |
-
}]
|
92 |
|
93 |
except Exception as e:
|
94 |
logger.error(f"Error processing video: {str(e)}", exc_info=True)
|
|
|
2 |
from transformers import AutoProcessor, AutoModelForImageTextToText
|
3 |
from typing import List, Dict
|
4 |
import logging
|
5 |
+
import os
|
6 |
+
import subprocess
|
7 |
+
import json
|
8 |
+
import tempfile
|
9 |
|
10 |
logger = logging.getLogger(__name__)
|
11 |
|
|
|
16 |
device = "cpu"
|
17 |
return device
|
18 |
|
19 |
+
def get_video_duration_seconds(video_path: str) -> float:
|
20 |
+
"""Use ffprobe to get video duration in seconds."""
|
21 |
+
cmd = [
|
22 |
+
"ffprobe",
|
23 |
+
"-v", "quiet",
|
24 |
+
"-print_format", "json",
|
25 |
+
"-show_format",
|
26 |
+
video_path
|
27 |
+
]
|
28 |
+
result = subprocess.run(cmd, capture_output=True, text=True)
|
29 |
+
info = json.loads(result.stdout)
|
30 |
+
return float(info["format"]["duration"])
|
31 |
+
|
32 |
+
def format_duration(seconds: int) -> str:
|
33 |
+
minutes = seconds // 60
|
34 |
+
secs = seconds % 60
|
35 |
+
return f"{minutes:02d}:{secs:02d}"
|
36 |
+
|
37 |
DEVICE = _grab_best_device()
|
38 |
|
39 |
logger.info(f"Using device: {DEVICE}")
|
|
|
57 |
).to(DEVICE)
|
58 |
logger.info(f"Model loaded on device: {self.model.device}")
|
59 |
|
60 |
+
def analyze_segment(self, video_path: str, start_time: float) -> str:
|
61 |
+
"""Analyze a single video segment."""
|
62 |
+
messages = [
|
63 |
+
{
|
64 |
+
"role": "system",
|
65 |
+
"content": [{"type": "text", "text": """You are a detailed video analysis assistant with expertise in scene description. Your task is to:
|
66 |
+
1. Describe the visual content with precise details
|
67 |
+
2. Note any significant actions or movements
|
68 |
+
3. Describe important objects, people, or elements in the scene
|
69 |
+
4. Capture the mood, atmosphere, or emotional content if present
|
70 |
+
5. Mention any scene transitions or camera movements
|
71 |
+
Be specific and thorough, but focus only on what is visually present in this segment."""}]
|
72 |
+
},
|
73 |
+
{
|
74 |
+
"role": "user",
|
75 |
+
"content": [
|
76 |
+
{"type": "video", "path": video_path},
|
77 |
+
{"type": "text", "text": """Describe this video segment in detail. Focus on:
|
78 |
+
- What objects, people, or elements are visible?
|
79 |
+
- What actions or movements are occurring?
|
80 |
+
- What is the setting or environment?
|
81 |
+
- Are there any notable visual effects or transitions?
|
82 |
+
- What is the overall mood or atmosphere?
|
83 |
+
Be specific about visual details but stay concise."""}
|
84 |
+
]
|
85 |
+
}
|
86 |
+
]
|
87 |
+
|
88 |
+
inputs = self.processor.apply_chat_template(
|
89 |
+
messages,
|
90 |
+
add_generation_prompt=True,
|
91 |
+
tokenize=True,
|
92 |
+
return_dict=True,
|
93 |
+
return_tensors="pt"
|
94 |
+
).to(DEVICE, dtype=torch.bfloat16)
|
95 |
+
|
96 |
+
outputs = self.model.generate(
|
97 |
+
**inputs,
|
98 |
+
do_sample=True,
|
99 |
+
temperature=0.7,
|
100 |
+
max_new_tokens=256
|
101 |
+
)
|
102 |
+
return self.processor.batch_decode(outputs, skip_special_tokens=True)[0].split("Assistant: ")[-1]
|
103 |
|
104 |
+
def process_video(self, video_path: str, segment_length: int = 10) -> List[Dict]:
|
105 |
+
try:
|
106 |
+
# Create temp directory for segments
|
107 |
+
temp_dir = tempfile.mkdtemp()
|
108 |
+
segments_info = []
|
109 |
|
110 |
+
# Get video duration
|
111 |
+
duration = get_video_duration_seconds(video_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
|
113 |
+
# Process video in segments
|
114 |
+
for start_time in range(0, int(duration), segment_length):
|
115 |
+
end_time = min(start_time + segment_length, duration)
|
116 |
+
|
117 |
+
# Create segment
|
118 |
+
segment_path = os.path.join(temp_dir, f"segment_{start_time}.mp4")
|
119 |
+
cmd = [
|
120 |
+
"ffmpeg",
|
121 |
+
"-y",
|
122 |
+
"-i", video_path,
|
123 |
+
"-ss", str(start_time),
|
124 |
+
"-t", str(segment_length),
|
125 |
+
"-c:v", "libx264",
|
126 |
+
"-preset", "ultrafast",
|
127 |
+
"-pix_fmt", "yuv420p",
|
128 |
+
segment_path
|
129 |
+
]
|
130 |
+
subprocess.run(cmd, check=True)
|
131 |
+
|
132 |
+
# Analyze segment
|
133 |
+
description = self.analyze_segment(segment_path, start_time)
|
134 |
+
|
135 |
+
# Add segment info with timestamp
|
136 |
+
segments_info.append({
|
137 |
+
"timestamp": format_duration(start_time),
|
138 |
+
"description": description
|
139 |
+
})
|
140 |
+
|
141 |
+
# Clean up segment file
|
142 |
+
os.remove(segment_path)
|
143 |
+
|
144 |
+
# Clean up temp directory
|
145 |
+
os.rmdir(temp_dir)
|
146 |
|
147 |
+
return segments_info
|
|
|
|
|
148 |
|
149 |
except Exception as e:
|
150 |
logger.error(f"Error processing video: {str(e)}", exc_info=True)
|