youssef
commited on
Commit
·
b841197
1
Parent(s):
11484b5
use cuda for ffmpeg
Browse files- Dockerfile +2 -0
- src/app.py +16 -9
- src/video_processor/processor.py +65 -21
Dockerfile
CHANGED
@@ -23,6 +23,8 @@ RUN apt-get update && \
|
|
23 |
liblzma-dev \
|
24 |
# gradio dependencies \
|
25 |
ffmpeg \
|
|
|
|
|
26 |
&& apt-get clean \
|
27 |
&& rm -rf /var/lib/apt/lists/*
|
28 |
|
|
|
23 |
liblzma-dev \
|
24 |
# gradio dependencies \
|
25 |
ffmpeg \
|
26 |
+
# NVIDIA Video Codec SDK \
|
27 |
+
libnvidia-encode-12-3 \
|
28 |
&& apt-get clean \
|
29 |
&& rm -rf /var/lib/apt/lists/*
|
30 |
|
src/app.py
CHANGED
@@ -70,18 +70,21 @@ def on_process(video):
|
|
70 |
|
71 |
# Process segments and show progress
|
72 |
segments = []
|
73 |
-
|
|
|
74 |
|
75 |
for i, segment in enumerate(analyzer.process_video(video)):
|
76 |
-
segment_start = time.time()
|
77 |
segments.append(segment)
|
78 |
-
|
79 |
-
|
|
|
|
|
80 |
|
81 |
progress = int((i + 1) / total_segments * 100)
|
82 |
-
|
|
|
83 |
remaining_segments = total_segments - (i + 1)
|
84 |
-
estimated_remaining = remaining_segments *
|
85 |
|
86 |
# Format current segments
|
87 |
formatted_desc = "### Video Analysis by Segments:\n\n"
|
@@ -90,8 +93,9 @@ def on_process(video):
|
|
90 |
|
91 |
yield [
|
92 |
f"Processing segments... {progress}% complete\n" +
|
93 |
-
f"Segment {i+1}/{total_segments}
|
94 |
-
f"
|
|
|
95 |
f"Estimated time remaining: {estimated_remaining:.2f}s",
|
96 |
formatted_desc,
|
97 |
gr.update(visible=True)
|
@@ -101,7 +105,10 @@ def on_process(video):
|
|
101 |
yield [
|
102 |
f"Processing complete!\n" +
|
103 |
f"Total processing time: {total_time:.2f}s\n" +
|
104 |
-
f"Average
|
|
|
|
|
|
|
105 |
formatted_desc,
|
106 |
gr.update(visible=True)
|
107 |
]
|
|
|
70 |
|
71 |
# Process segments and show progress
|
72 |
segments = []
|
73 |
+
total_ffmpeg_time = 0
|
74 |
+
total_inference_time = 0
|
75 |
|
76 |
for i, segment in enumerate(analyzer.process_video(video)):
|
|
|
77 |
segments.append(segment)
|
78 |
+
|
79 |
+
# Update timing totals
|
80 |
+
total_ffmpeg_time += segment['processing_times']['ffmpeg']
|
81 |
+
total_inference_time += segment['processing_times']['inference']
|
82 |
|
83 |
progress = int((i + 1) / total_segments * 100)
|
84 |
+
avg_ffmpeg_time = total_ffmpeg_time / (i + 1)
|
85 |
+
avg_inference_time = total_inference_time / (i + 1)
|
86 |
remaining_segments = total_segments - (i + 1)
|
87 |
+
estimated_remaining = remaining_segments * (avg_ffmpeg_time + avg_inference_time)
|
88 |
|
89 |
# Format current segments
|
90 |
formatted_desc = "### Video Analysis by Segments:\n\n"
|
|
|
93 |
|
94 |
yield [
|
95 |
f"Processing segments... {progress}% complete\n" +
|
96 |
+
f"Segment {i+1}/{total_segments}\n" +
|
97 |
+
f"FFmpeg processing: {segment['processing_times']['ffmpeg']:.2f}s (avg: {avg_ffmpeg_time:.2f}s)\n" +
|
98 |
+
f"Model inference: {segment['processing_times']['inference']:.2f}s (avg: {avg_inference_time:.2f}s)\n" +
|
99 |
f"Estimated time remaining: {estimated_remaining:.2f}s",
|
100 |
formatted_desc,
|
101 |
gr.update(visible=True)
|
|
|
105 |
yield [
|
106 |
f"Processing complete!\n" +
|
107 |
f"Total processing time: {total_time:.2f}s\n" +
|
108 |
+
f"Average per segment:\n" +
|
109 |
+
f" - FFmpeg: {total_ffmpeg_time/total_segments:.2f}s\n" +
|
110 |
+
f" - Inference: {total_inference_time/total_segments:.2f}s\n" +
|
111 |
+
f" - Total: {(total_ffmpeg_time + total_inference_time)/total_segments:.2f}s",
|
112 |
formatted_desc,
|
113 |
gr.update(visible=True)
|
114 |
]
|
src/video_processor/processor.py
CHANGED
@@ -1,11 +1,12 @@
|
|
1 |
import torch
|
2 |
from transformers import AutoProcessor, AutoModelForImageTextToText
|
3 |
-
from typing import List, Dict
|
4 |
import logging
|
5 |
import os
|
6 |
import subprocess
|
7 |
import json
|
8 |
import tempfile
|
|
|
9 |
|
10 |
logger = logging.getLogger(__name__)
|
11 |
|
@@ -44,7 +45,7 @@ class VideoAnalyzer:
|
|
44 |
raise RuntimeError("CUDA is required but not available!")
|
45 |
|
46 |
logger.info("Initializing VideoAnalyzer")
|
47 |
-
self.model_path = "HuggingFaceTB/SmolVLM2-
|
48 |
logger.info(f"Loading model from {self.model_path} - Using device: {DEVICE}")
|
49 |
|
50 |
# Load processor and model
|
@@ -53,6 +54,7 @@ class VideoAnalyzer:
|
|
53 |
self.model = AutoModelForImageTextToText.from_pretrained(
|
54 |
self.model_path,
|
55 |
torch_dtype=torch.bfloat16,
|
|
|
56 |
_attn_implementation="flash_attention_2"
|
57 |
).to(DEVICE)
|
58 |
logger.info(f"Model loaded on device: {self.model.device}")
|
@@ -101,20 +103,19 @@ Be specific about visual details but stay concise."""}
|
|
101 |
)
|
102 |
return self.processor.batch_decode(outputs, skip_special_tokens=True)[0].split("Assistant: ")[-1]
|
103 |
|
104 |
-
def process_video(self, video_path: str, segment_length: int = 10) ->
|
105 |
try:
|
106 |
# Create temp directory for segments
|
107 |
temp_dir = tempfile.mkdtemp()
|
108 |
-
segments_info = []
|
109 |
|
110 |
# Get video duration
|
111 |
duration = get_video_duration_seconds(video_path)
|
112 |
-
|
113 |
-
total_segments = int(duration / segment_length)
|
114 |
logger.info(f"Processing {total_segments} segments for video of length {duration:.2f} seconds")
|
115 |
|
116 |
# Process video in segments
|
117 |
for segment_idx in range(total_segments):
|
|
|
118 |
start_time = segment_idx * segment_length
|
119 |
end_time = min(start_time + segment_length, duration)
|
120 |
|
@@ -122,40 +123,83 @@ Be specific about visual details but stay concise."""}
|
|
122 |
if start_time >= duration:
|
123 |
break
|
124 |
|
125 |
-
# Create segment
|
126 |
segment_path = os.path.join(temp_dir, f"segment_{start_time}.mp4")
|
127 |
cmd = [
|
128 |
"ffmpeg",
|
129 |
-
"-y",
|
|
|
|
|
|
|
|
|
130 |
"-i", video_path,
|
131 |
-
"-ss", str(start_time),
|
132 |
-
"-t", str(end_time - start_time), # Duration
|
133 |
-
"-c:v", "
|
134 |
-
"-preset", "
|
135 |
-
"-
|
|
|
|
|
|
|
|
|
|
|
136 |
segment_path
|
137 |
]
|
138 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
|
140 |
# Analyze segment
|
|
|
141 |
description = self.analyze_segment(segment_path, start_time)
|
|
|
142 |
|
143 |
# Add segment info with timestamp
|
144 |
-
|
145 |
-
"timestamp": format_duration(start_time),
|
146 |
-
"description": description
|
147 |
-
|
|
|
|
|
|
|
|
|
|
|
148 |
|
149 |
# Clean up segment file
|
150 |
os.remove(segment_path)
|
151 |
|
152 |
-
logger.info(
|
|
|
|
|
|
|
153 |
|
154 |
# Clean up temp directory
|
155 |
os.rmdir(temp_dir)
|
156 |
|
157 |
-
return segments_info
|
158 |
-
|
159 |
except Exception as e:
|
160 |
logger.error(f"Error processing video: {str(e)}", exc_info=True)
|
161 |
raise
|
|
|
1 |
import torch
|
2 |
from transformers import AutoProcessor, AutoModelForImageTextToText
|
3 |
+
from typing import List, Dict, Generator
|
4 |
import logging
|
5 |
import os
|
6 |
import subprocess
|
7 |
import json
|
8 |
import tempfile
|
9 |
+
import time
|
10 |
|
11 |
logger = logging.getLogger(__name__)
|
12 |
|
|
|
45 |
raise RuntimeError("CUDA is required but not available!")
|
46 |
|
47 |
logger.info("Initializing VideoAnalyzer")
|
48 |
+
self.model_path = "HuggingFaceTB/SmolVLM2-500M-Video-Instruct"
|
49 |
logger.info(f"Loading model from {self.model_path} - Using device: {DEVICE}")
|
50 |
|
51 |
# Load processor and model
|
|
|
54 |
self.model = AutoModelForImageTextToText.from_pretrained(
|
55 |
self.model_path,
|
56 |
torch_dtype=torch.bfloat16,
|
57 |
+
device_map=DEVICE,
|
58 |
_attn_implementation="flash_attention_2"
|
59 |
).to(DEVICE)
|
60 |
logger.info(f"Model loaded on device: {self.model.device}")
|
|
|
103 |
)
|
104 |
return self.processor.batch_decode(outputs, skip_special_tokens=True)[0].split("Assistant: ")[-1]
|
105 |
|
106 |
+
def process_video(self, video_path: str, segment_length: int = 10) -> Generator[Dict, None, None]:
|
107 |
try:
|
108 |
# Create temp directory for segments
|
109 |
temp_dir = tempfile.mkdtemp()
|
|
|
110 |
|
111 |
# Get video duration
|
112 |
duration = get_video_duration_seconds(video_path)
|
113 |
+
total_segments = (int(duration) + segment_length - 1) // segment_length
|
|
|
114 |
logger.info(f"Processing {total_segments} segments for video of length {duration:.2f} seconds")
|
115 |
|
116 |
# Process video in segments
|
117 |
for segment_idx in range(total_segments):
|
118 |
+
segment_start_time = time.time()
|
119 |
start_time = segment_idx * segment_length
|
120 |
end_time = min(start_time + segment_length, duration)
|
121 |
|
|
|
123 |
if start_time >= duration:
|
124 |
break
|
125 |
|
126 |
+
# Create segment - Optimized ffmpeg settings
|
127 |
segment_path = os.path.join(temp_dir, f"segment_{start_time}.mp4")
|
128 |
cmd = [
|
129 |
"ffmpeg",
|
130 |
+
"-y", # Overwrite output files
|
131 |
+
"-hwaccel", "cuda", # Use CUDA hardware acceleration
|
132 |
+
"-hwaccel_output_format", "cuda", # Keep frames in GPU memory
|
133 |
+
"-threads", "0", # Use all available CPU threads
|
134 |
+
"-thread_type", "frame", # Frame-level multi-threading
|
135 |
"-i", video_path,
|
136 |
+
"-ss", str(start_time), # Seek position
|
137 |
+
"-t", str(end_time - start_time), # Duration
|
138 |
+
"-c:v", "h264_nvenc", # Use NVIDIA hardware encoder
|
139 |
+
"-preset", "p1", # Lowest latency preset for NVENC
|
140 |
+
"-tune", "ll", # Low latency tuning
|
141 |
+
"-rc", "vbr", # Variable bitrate mode
|
142 |
+
"-cq", "28", # Quality-based VBR
|
143 |
+
"-b:v", "0", # Let VBR control bitrate
|
144 |
+
"-vf", "scale_cuda=640:-2", # GPU-accelerated scaling
|
145 |
+
"-an", # Remove audio
|
146 |
segment_path
|
147 |
]
|
148 |
+
|
149 |
+
ffmpeg_start = time.time()
|
150 |
+
try:
|
151 |
+
result = subprocess.run(cmd, check=True, capture_output=True, text=True)
|
152 |
+
logger.debug(f"FFmpeg output: {result.stderr}")
|
153 |
+
except subprocess.CalledProcessError as e:
|
154 |
+
logger.error(f"FFmpeg error: {e.stderr}")
|
155 |
+
# Fallback to CPU if GPU encoding fails
|
156 |
+
logger.warning("Falling back to CPU encoding")
|
157 |
+
cmd = [
|
158 |
+
"ffmpeg",
|
159 |
+
"-y",
|
160 |
+
"-threads", "0",
|
161 |
+
"-i", video_path,
|
162 |
+
"-ss", str(start_time),
|
163 |
+
"-t", str(end_time - start_time),
|
164 |
+
"-c:v", "libx264",
|
165 |
+
"-preset", "ultrafast",
|
166 |
+
"-tune", "fastdecode",
|
167 |
+
"-crf", "28",
|
168 |
+
"-vf", "scale=640:-2",
|
169 |
+
"-an",
|
170 |
+
"-pix_fmt", "yuv420p",
|
171 |
+
segment_path
|
172 |
+
]
|
173 |
+
subprocess.run(cmd, check=True, capture_output=True)
|
174 |
+
ffmpeg_time = time.time() - ffmpeg_start
|
175 |
|
176 |
# Analyze segment
|
177 |
+
inference_start = time.time()
|
178 |
description = self.analyze_segment(segment_path, start_time)
|
179 |
+
inference_time = time.time() - inference_start
|
180 |
|
181 |
# Add segment info with timestamp
|
182 |
+
yield {
|
183 |
+
"timestamp": format_duration(int(start_time)),
|
184 |
+
"description": description,
|
185 |
+
"processing_times": {
|
186 |
+
"ffmpeg": ffmpeg_time,
|
187 |
+
"inference": inference_time,
|
188 |
+
"total": time.time() - segment_start_time
|
189 |
+
}
|
190 |
+
}
|
191 |
|
192 |
# Clean up segment file
|
193 |
os.remove(segment_path)
|
194 |
|
195 |
+
logger.info(
|
196 |
+
f"Segment {segment_idx + 1}/{total_segments} ({start_time}-{end_time}s) - "
|
197 |
+
f"FFmpeg: {ffmpeg_time:.2f}s, Inference: {inference_time:.2f}s"
|
198 |
+
)
|
199 |
|
200 |
# Clean up temp directory
|
201 |
os.rmdir(temp_dir)
|
202 |
|
|
|
|
|
203 |
except Exception as e:
|
204 |
logger.error(f"Error processing video: {str(e)}", exc_info=True)
|
205 |
raise
|