File size: 1,864 Bytes
e41d0cb
398bcaf
e41d0cb
398bcaf
e41d0cb
398bcaf
 
 
 
 
 
 
 
 
e41d0cb
 
 
398bcaf
 
e41d0cb
398bcaf
 
 
 
 
 
 
e41d0cb
398bcaf
 
 
 
 
e41d0cb
 
398bcaf
e41d0cb
398bcaf
 
 
 
e41d0cb
398bcaf
e41d0cb
 
 
398bcaf
e41d0cb
398bcaf
 
e41d0cb
 
 
398bcaf
 
e41d0cb
 
 
398bcaf
 
e41d0cb
 
 
 
 
 
398bcaf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import gradio as gr
from llava_med import LlavaMedProcessor, LlavaMedForCausalLM
from PIL import Image
import torch

# Load model and processor
model = LlavaMedForCausalLM.from_pretrained(
    "microsoft/llava-med-v1.5-mistral-7b",
    torch_dtype=torch.float32,  # Use float32 for CPU stability
    low_cpu_mem_usage=True,
    device_map="cpu"
)
processor = LlavaMedProcessor.from_pretrained(
    "microsoft/llava-med-v1.5-mistral-7b"
)

def analyze_medical_image(image, question):
    # Prepare inputs
    prompt = f"Question: {question} Answer:"
    
    # Process inputs
    inputs = processor(
        text=prompt,
        images=image,
        return_tensors="pt",
        padding=True
    ).to("cpu")
    
    # Generate response
    with torch.no_grad():
        outputs = model.generate(
            **inputs,
            max_new_tokens=256,
            do_sample=True,
            temperature=0.7,
            top_p=0.9
        )
    
    # Decode response
    response = processor.batch_decode(
        outputs, 
        skip_special_tokens=True
    )[0].split("Answer:")[-1].strip()
    
    return response

# Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("# LLaVA-Med Medical Analysis (CPU)")
    gr.Markdown("Official Microsoft LLaVA-Med 1.5-Mistral-7B implementation")
    
    with gr.Row():
        with gr.Column():
            image_input = gr.Image(label="Medical Image", type="pil")
            question_input = gr.Textbox(label="Clinical Question", placeholder="Enter your medical question...")
            submit_btn = gr.Button("Analyze")
        
        with gr.Column():
            output_text = gr.Textbox(label="Clinical Analysis", interactive=False)

    submit_btn.click(
        fn=analyze_medical_image,
        inputs=[image_input, question_input],
        outputs=output_text
    )

demo.queue(max_size=5).launch()