Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from llava.model.builder import load_pretrained_model
|
3 |
+
from llava.mm_utils import process_images, tokenizer_image_token
|
4 |
+
from llava.constants import IMAGE_TOKEN_INDEX
|
5 |
+
import torch
|
6 |
+
from PIL import Image
|
7 |
+
|
8 |
+
model_path = "microsoft/llava-med-v1.5-mistral-7b"
|
9 |
+
tokenizer, model, image_processor, _ = load_pretrained_model(
|
10 |
+
model_path=model_path,
|
11 |
+
model_base=None,
|
12 |
+
model_name="llava-med-v1.5-mistral-7b",
|
13 |
+
load_4bit=False, # Disable 4-bit quantization for CPU
|
14 |
+
device_map="cpu" # Force CPU usage
|
15 |
+
)
|
16 |
+
model.to('cpu')
|
17 |
+
|
18 |
+
def analyze_medical_image(image, question):
|
19 |
+
if isinstance(image, str):
|
20 |
+
image = Image.open(image)
|
21 |
+
else:
|
22 |
+
image = Image.fromarray(image)
|
23 |
+
|
24 |
+
image_tensor = process_images([image], image_processor, model.config)[0]
|
25 |
+
prompt = f"USER: <image>\n{question}\nASSISTANT:"
|
26 |
+
|
27 |
+
input_ids = tokenizer_image_token(
|
28 |
+
prompt,
|
29 |
+
tokenizer,
|
30 |
+
IMAGE_TOKEN_INDEX,
|
31 |
+
return_tensors='pt'
|
32 |
+
).unsqueeze(0)
|
33 |
+
|
34 |
+
with torch.inference_mode():
|
35 |
+
output_ids = model.generate(
|
36 |
+
input_ids,
|
37 |
+
images=image_tensor.unsqueeze(0),
|
38 |
+
max_new_tokens=512,
|
39 |
+
do_sample=True,
|
40 |
+
temperature=0.7,
|
41 |
+
use_cache=True
|
42 |
+
)
|
43 |
+
|
44 |
+
response = tokenizer.decode(
|
45 |
+
output_ids[0][input_ids.shape[1]:],
|
46 |
+
skip_special_tokens=True
|
47 |
+
).strip()
|
48 |
+
|
49 |
+
return response
|
50 |
+
|
51 |
+
with gr.Blocks() as demo:
|
52 |
+
gr.Markdown("# LLaVA-Med Medical Image Analysis")
|
53 |
+
gr.Markdown("Ask questions about medical images using Microsoft's LLaVA-Med 1.5-Mistral-7B")
|
54 |
+
|
55 |
+
with gr.Row():
|
56 |
+
with gr.Column():
|
57 |
+
image_input = gr.Image(label="Upload Medical Image", type="pil")
|
58 |
+
question_input = gr.Textbox(label="Question", placeholder="Ask about the medical image...")
|
59 |
+
submit_btn = gr.Button("Analyze")
|
60 |
+
|
61 |
+
with gr.Column():
|
62 |
+
output_text = gr.Textbox(label="Analysis Result", interactive=False)
|
63 |
+
|
64 |
+
examples = gr.Examples(
|
65 |
+
examples=[
|
66 |
+
["examples/chest_xray.jpg", "What abnormalities are present in this chest X-ray?"],
|
67 |
+
["examples/retina_scan.jpg", "Are there any signs of diabetic retinopathy?"]
|
68 |
+
],
|
69 |
+
inputs=[image_input, question_input],
|
70 |
+
label="Example Queries"
|
71 |
+
)
|
72 |
+
|
73 |
+
submit_btn.click(
|
74 |
+
fn=analyze_medical_image,
|
75 |
+
inputs=[image_input, question_input],
|
76 |
+
outputs=output_text
|
77 |
+
)
|
78 |
+
|
79 |
+
demo.queue(max_size=10).launch()
|