Update app.py
Browse files
app.py
CHANGED
@@ -1,79 +1,67 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
-
from llava.mm_utils import process_images, tokenizer_image_token
|
4 |
-
from llava.constants import IMAGE_TOKEN_INDEX
|
5 |
-
import torch
|
6 |
from PIL import Image
|
|
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
|
|
|
|
15 |
)
|
16 |
-
model.to('cpu')
|
17 |
|
18 |
def analyze_medical_image(image, question):
|
19 |
-
|
20 |
-
|
21 |
-
else:
|
22 |
-
image = Image.fromarray(image)
|
23 |
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
).unsqueeze(0)
|
33 |
-
|
34 |
-
with torch.inference_mode():
|
35 |
-
output_ids = model.generate(
|
36 |
-
input_ids,
|
37 |
-
images=image_tensor.unsqueeze(0),
|
38 |
-
max_new_tokens=512,
|
39 |
do_sample=True,
|
40 |
temperature=0.7,
|
41 |
-
|
42 |
)
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
46 |
skip_special_tokens=True
|
47 |
-
).strip()
|
48 |
|
49 |
return response
|
50 |
|
|
|
51 |
with gr.Blocks() as demo:
|
52 |
-
gr.Markdown("# LLaVA-Med Medical
|
53 |
-
gr.Markdown("
|
54 |
|
55 |
with gr.Row():
|
56 |
with gr.Column():
|
57 |
-
image_input = gr.Image(label="
|
58 |
-
question_input = gr.Textbox(label="Question", placeholder="
|
59 |
submit_btn = gr.Button("Analyze")
|
60 |
|
61 |
with gr.Column():
|
62 |
-
output_text = gr.Textbox(label="Analysis
|
63 |
-
|
64 |
-
examples = gr.Examples(
|
65 |
-
examples=[
|
66 |
-
["examples/chest_xray.jpg", "What abnormalities are present in this chest X-ray?"],
|
67 |
-
["examples/retina_scan.jpg", "Are there any signs of diabetic retinopathy?"]
|
68 |
-
],
|
69 |
-
inputs=[image_input, question_input],
|
70 |
-
label="Example Queries"
|
71 |
-
)
|
72 |
-
|
73 |
submit_btn.click(
|
74 |
fn=analyze_medical_image,
|
75 |
inputs=[image_input, question_input],
|
76 |
outputs=output_text
|
77 |
)
|
78 |
|
79 |
-
demo.queue(max_size=
|
|
|
1 |
import gradio as gr
|
2 |
+
from llava_med import LlavaMedProcessor, LlavaMedForCausalLM
|
|
|
|
|
|
|
3 |
from PIL import Image
|
4 |
+
import torch
|
5 |
|
6 |
+
# Load model and processor
|
7 |
+
model = LlavaMedForCausalLM.from_pretrained(
|
8 |
+
"microsoft/llava-med-v1.5-mistral-7b",
|
9 |
+
torch_dtype=torch.float32, # Use float32 for CPU stability
|
10 |
+
low_cpu_mem_usage=True,
|
11 |
+
device_map="cpu"
|
12 |
+
)
|
13 |
+
processor = LlavaMedProcessor.from_pretrained(
|
14 |
+
"microsoft/llava-med-v1.5-mistral-7b"
|
15 |
)
|
|
|
16 |
|
17 |
def analyze_medical_image(image, question):
|
18 |
+
# Prepare inputs
|
19 |
+
prompt = f"Question: {question} Answer:"
|
|
|
|
|
20 |
|
21 |
+
# Process inputs
|
22 |
+
inputs = processor(
|
23 |
+
text=prompt,
|
24 |
+
images=image,
|
25 |
+
return_tensors="pt",
|
26 |
+
padding=True
|
27 |
+
).to("cpu")
|
28 |
|
29 |
+
# Generate response
|
30 |
+
with torch.no_grad():
|
31 |
+
outputs = model.generate(
|
32 |
+
**inputs,
|
33 |
+
max_new_tokens=256,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
do_sample=True,
|
35 |
temperature=0.7,
|
36 |
+
top_p=0.9
|
37 |
)
|
38 |
+
|
39 |
+
# Decode response
|
40 |
+
response = processor.batch_decode(
|
41 |
+
outputs,
|
42 |
skip_special_tokens=True
|
43 |
+
)[0].split("Answer:")[-1].strip()
|
44 |
|
45 |
return response
|
46 |
|
47 |
+
# Gradio interface
|
48 |
with gr.Blocks() as demo:
|
49 |
+
gr.Markdown("# LLaVA-Med Medical Analysis (CPU)")
|
50 |
+
gr.Markdown("Official Microsoft LLaVA-Med 1.5-Mistral-7B implementation")
|
51 |
|
52 |
with gr.Row():
|
53 |
with gr.Column():
|
54 |
+
image_input = gr.Image(label="Medical Image", type="pil")
|
55 |
+
question_input = gr.Textbox(label="Clinical Question", placeholder="Enter your medical question...")
|
56 |
submit_btn = gr.Button("Analyze")
|
57 |
|
58 |
with gr.Column():
|
59 |
+
output_text = gr.Textbox(label="Clinical Analysis", interactive=False)
|
60 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
submit_btn.click(
|
62 |
fn=analyze_medical_image,
|
63 |
inputs=[image_input, question_input],
|
64 |
outputs=output_text
|
65 |
)
|
66 |
|
67 |
+
demo.queue(max_size=5).launch()
|