File size: 10,119 Bytes
67c01ec 4e1519e 8427637 959152c 8427637 67c01ec 8427637 67c01ec 959152c 67c01ec 959152c 6afbfac 959152c 6afbfac 959152c 6afbfac 959152c 6afbfac 959152c 8427637 6afbfac 959152c 6afbfac 959152c 6afbfac 959152c 6afbfac 959152c 8427637 959152c 6afbfac 959152c 6afbfac 959152c 6afbfac 959152c 6afbfac 959152c 6afbfac 959152c 6afbfac 959152c 6afbfac 959152c 8427637 959152c 6afbfac 959152c 6afbfac 959152c 8427637 959152c 6afbfac 959152c 6afbfac 959152c 6afbfac 959152c 6afbfac 959152c 6afbfac 959152c 6afbfac 959152c 6afbfac 959152c 6afbfac 959152c 6afbfac 959152c 6afbfac 959152c 8427637 959152c 8427637 959152c 6afbfac 959152c 6afbfac 959152c 6afbfac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
import streamlit as st
import pandas as pd
import numpy as np
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
import os
from datetime import datetime
import requests
from datasets import load_dataset
from urllib.parse import quote
# Initialize session state
if 'search_history' not in st.session_state:
st.session_state['search_history'] = []
if 'search_columns' not in st.session_state:
st.session_state['search_columns'] = []
if 'initial_search_done' not in st.session_state:
st.session_state['initial_search_done'] = False
if 'dataset' not in st.session_state:
st.session_state['dataset'] = None
class DatasetSearcher:
def __init__(self, dataset_id="tomg-group-umd/cinepile"):
self.dataset_id = dataset_id
self.text_model = SentenceTransformer('all-MiniLM-L6-v2')
self.token = os.environ.get('DATASET_KEY')
if not self.token:
st.error("Please set the DATASET_KEY environment variable with your Hugging Face token.")
st.stop()
self.load_dataset()
def load_dataset(self):
"""Load dataset using the datasets library"""
try:
if st.session_state['dataset'] is None:
with st.spinner("Loading dataset..."):
st.session_state['dataset'] = load_dataset(
self.dataset_id,
token=self.token,
streaming=False
)
self.dataset = st.session_state['dataset']
# Convert first split to DataFrame for easier processing
first_split = next(iter(self.dataset.values()))
self.df = pd.DataFrame(first_split)
# Store column information
self.columns = list(self.df.columns)
self.text_columns = [col for col in self.columns
if self.df[col].dtype == 'object'
and not any(term in col.lower()
for term in ['embed', 'vector', 'encoding'])]
# Update session state columns
st.session_state['search_columns'] = self.text_columns
# Prepare text embeddings
self.prepare_features()
except Exception as e:
st.error(f"Error loading dataset: {str(e)}")
st.error("Please check your authentication token and internet connection.")
st.stop()
def prepare_features(self):
"""Prepare text embeddings for semantic search"""
try:
# Combine text columns for embedding
combined_text = self.df[self.text_columns].fillna('').agg(' '.join, axis=1)
# Create embeddings in batches to manage memory
batch_size = 32
all_embeddings = []
with st.spinner("Preparing search features..."):
for i in range(0, len(combined_text), batch_size):
batch = combined_text[i:i+batch_size].tolist()
embeddings = self.text_model.encode(batch)
all_embeddings.append(embeddings)
self.text_embeddings = np.vstack(all_embeddings)
except Exception as e:
st.warning(f"Error preparing features: {str(e)}")
self.text_embeddings = np.random.randn(len(self.df), 384)
def search(self, query, column=None, top_k=20):
"""Search the dataset using semantic and keyword matching"""
if self.df.empty:
return []
# Get semantic similarity scores
query_embedding = self.text_model.encode([query])[0]
similarities = cosine_similarity([query_embedding], self.text_embeddings)[0]
# Get keyword match scores
search_columns = [column] if column and column != "All Fields" else self.text_columns
keyword_scores = np.zeros(len(self.df))
for col in search_columns:
if col in self.df.columns:
matches = self.df[col].fillna('').str.lower().str.count(query.lower())
keyword_scores += matches
# Combine scores
combined_scores = 0.5 * similarities + 0.5 * (keyword_scores / max(1, keyword_scores.max()))
# Get top results
top_k = min(top_k, len(combined_scores))
top_indices = np.argsort(combined_scores)[-top_k:][::-1]
# Format results
results = []
for idx in top_indices:
result = {
'relevance_score': float(combined_scores[idx]),
'semantic_score': float(similarities[idx]),
'keyword_score': float(keyword_scores[idx]),
**self.df.iloc[idx].to_dict()
}
results.append(result)
return results
def get_dataset_info(self):
"""Get information about the dataset"""
if not self.dataset:
return {}
info = {
'splits': list(self.dataset.keys()),
'total_rows': sum(split.num_rows for split in self.dataset.values()),
'columns': self.columns,
'text_columns': self.text_columns,
'sample_rows': len(self.df),
'embeddings_shape': self.text_embeddings.shape
}
return info
def render_video_result(result):
"""Render a video result with enhanced display"""
col1, col2 = st.columns([2, 1])
with col1:
if 'title' in result:
st.markdown(f"**Title:** {result['title']}")
if 'description' in result:
st.markdown("**Description:**")
st.write(result['description'])
# Show timing information if available
if 'start_time' in result and 'end_time' in result:
st.markdown(f"**Time Range:** {result['start_time']}s - {result['end_time']}s")
# Show additional metadata
for key, value in result.items():
if key not in ['title', 'description', 'start_time', 'end_time', 'duration',
'relevance_score', 'semantic_score', 'keyword_score',
'video_id', 'youtube_id']:
st.markdown(f"**{key.replace('_', ' ').title()}:** {value}")
with col2:
# Show search scores
st.markdown("**Search Scores:**")
cols = st.columns(3)
cols[0].metric("Overall", f"{result['relevance_score']:.2%}")
cols[1].metric("Semantic", f"{result['semantic_score']:.2%}")
cols[2].metric("Keyword", f"{result['keyword_score']:.0f} matches")
# Display video if available
if 'youtube_id' in result:
st.video(f"https://youtube.com/watch?v={result['youtube_id']}&t={result.get('start_time', 0)}")
def main():
st.title("π₯ Video Dataset Search")
# Initialize search class
searcher = DatasetSearcher()
# Create tabs
tab1, tab2 = st.tabs(["π Search", "π Dataset Info"])
# ---- Tab 1: Search ----
with tab1:
st.subheader("Search Videos")
col1, col2 = st.columns([3, 1])
with col1:
query = st.text_input("Search query:",
value="" if st.session_state['initial_search_done'] else "")
with col2:
search_column = st.selectbox("Search in field:",
["All Fields"] + st.session_state['search_columns'])
col3, col4 = st.columns(2)
with col3:
num_results = st.slider("Number of results:", 1, 100, 20)
with col4:
search_button = st.button("π Search")
if search_button and query:
st.session_state['initial_search_done'] = True
selected_column = None if search_column == "All Fields" else search_column
with st.spinner("Searching..."):
results = searcher.search(query, selected_column, num_results)
st.session_state['search_history'].append({
'query': query,
'timestamp': datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
'results': results[:5]
})
for i, result in enumerate(results, 1):
with st.expander(
f"Result {i}: {result.get('title', result.get('description', 'No title'))[:100]}...",
expanded=(i==1)
):
render_video_result(result)
# ---- Tab 2: Dataset Info ----
with tab2:
st.subheader("Dataset Information")
info = searcher.get_dataset_info()
if info:
st.write(f"### Dataset: {searcher.dataset_id}")
st.write(f"- Total rows: {info['total_rows']:,}")
st.write(f"- Available splits: {', '.join(info['splits'])}")
st.write(f"- Number of columns: {len(info['columns'])}")
st.write(f"- Searchable text columns: {', '.join(info['text_columns'])}")
st.write("### Sample Data")
st.dataframe(searcher.df.head())
st.write("### Column Details")
for col in info['columns']:
st.write(f"- **{col}**: {searcher.df[col].dtype}")
# Sidebar
with st.sidebar:
st.subheader("βοΈ Search History")
if st.button("ποΈ Clear History"):
st.session_state['search_history'] = []
st.experimental_rerun()
st.markdown("### Recent Searches")
for entry in reversed(st.session_state['search_history'][-5:]):
with st.expander(f"{entry['timestamp']}: {entry['query']}"):
for i, result in enumerate(entry['results'], 1):
st.write(f"{i}. {result.get('title', result.get('description', 'No title'))[:100]}...")
if __name__ == "__main__":
main() |