File size: 10,119 Bytes
67c01ec
 
 
 
 
4e1519e
8427637
 
959152c
8427637
67c01ec
8427637
67c01ec
 
 
 
 
 
959152c
 
67c01ec
959152c
 
 
6afbfac
959152c
 
 
 
6afbfac
959152c
 
 
6afbfac
959152c
 
 
 
 
 
 
 
 
 
 
 
6afbfac
959152c
 
 
 
 
 
 
 
 
 
 
 
8427637
6afbfac
959152c
 
 
6afbfac
 
959152c
6afbfac
959152c
 
6afbfac
959152c
 
 
8427637
959152c
 
 
 
 
 
 
 
 
 
 
6afbfac
 
959152c
 
 
 
 
6afbfac
959152c
 
 
 
 
 
 
 
 
 
6afbfac
959152c
 
6afbfac
959152c
 
 
6afbfac
959152c
6afbfac
 
959152c
 
 
 
 
 
6afbfac
 
 
 
959152c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8427637
959152c
 
 
 
6afbfac
959152c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6afbfac
 
959152c
 
 
 
 
 
 
 
 
 
8427637
 
959152c
6afbfac
 
959152c
6afbfac
 
959152c
6afbfac
959152c
6afbfac
 
 
959152c
6afbfac
959152c
 
6afbfac
 
 
 
 
 
 
 
 
 
959152c
6afbfac
 
959152c
6afbfac
959152c
6afbfac
 
 
 
 
 
 
 
959152c
 
 
 
 
 
 
6afbfac
959152c
 
 
 
 
 
 
 
 
8427637
959152c
 
8427637
959152c
 
 
6afbfac
 
 
959152c
6afbfac
 
 
 
 
 
 
 
959152c
6afbfac
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import streamlit as st
import pandas as pd
import numpy as np
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
import os
from datetime import datetime
import requests
from datasets import load_dataset
from urllib.parse import quote

# Initialize session state
if 'search_history' not in st.session_state:
    st.session_state['search_history'] = []
if 'search_columns' not in st.session_state:
    st.session_state['search_columns'] = []
if 'initial_search_done' not in st.session_state:
    st.session_state['initial_search_done'] = False
if 'dataset' not in st.session_state:
    st.session_state['dataset'] = None

class DatasetSearcher:
    def __init__(self, dataset_id="tomg-group-umd/cinepile"):
        self.dataset_id = dataset_id
        self.text_model = SentenceTransformer('all-MiniLM-L6-v2')
        self.token = os.environ.get('DATASET_KEY')
        if not self.token:
            st.error("Please set the DATASET_KEY environment variable with your Hugging Face token.")
            st.stop()
        self.load_dataset()

    def load_dataset(self):
        """Load dataset using the datasets library"""
        try:
            if st.session_state['dataset'] is None:
                with st.spinner("Loading dataset..."):
                    st.session_state['dataset'] = load_dataset(
                        self.dataset_id,
                        token=self.token,
                        streaming=False
                    )
            
            self.dataset = st.session_state['dataset']
            # Convert first split to DataFrame for easier processing
            first_split = next(iter(self.dataset.values()))
            self.df = pd.DataFrame(first_split)
            
            # Store column information
            self.columns = list(self.df.columns)
            self.text_columns = [col for col in self.columns 
                               if self.df[col].dtype == 'object' 
                               and not any(term in col.lower() 
                                         for term in ['embed', 'vector', 'encoding'])]
            
            # Update session state columns
            st.session_state['search_columns'] = self.text_columns
            
            # Prepare text embeddings
            self.prepare_features()
            
        except Exception as e:
            st.error(f"Error loading dataset: {str(e)}")
            st.error("Please check your authentication token and internet connection.")
            st.stop()

    def prepare_features(self):
        """Prepare text embeddings for semantic search"""
        try:
            # Combine text columns for embedding
            combined_text = self.df[self.text_columns].fillna('').agg(' '.join, axis=1)
            
            # Create embeddings in batches to manage memory
            batch_size = 32
            all_embeddings = []
            
            with st.spinner("Preparing search features..."):
                for i in range(0, len(combined_text), batch_size):
                    batch = combined_text[i:i+batch_size].tolist()
                    embeddings = self.text_model.encode(batch)
                    all_embeddings.append(embeddings)
            
            self.text_embeddings = np.vstack(all_embeddings)
            
        except Exception as e:
            st.warning(f"Error preparing features: {str(e)}")
            self.text_embeddings = np.random.randn(len(self.df), 384)

    def search(self, query, column=None, top_k=20):
        """Search the dataset using semantic and keyword matching"""
        if self.df.empty:
            return []
        
        # Get semantic similarity scores
        query_embedding = self.text_model.encode([query])[0]
        similarities = cosine_similarity([query_embedding], self.text_embeddings)[0]
        
        # Get keyword match scores
        search_columns = [column] if column and column != "All Fields" else self.text_columns
        keyword_scores = np.zeros(len(self.df))
        
        for col in search_columns:
            if col in self.df.columns:
                matches = self.df[col].fillna('').str.lower().str.count(query.lower())
                keyword_scores += matches
        
        # Combine scores
        combined_scores = 0.5 * similarities + 0.5 * (keyword_scores / max(1, keyword_scores.max()))
        
        # Get top results
        top_k = min(top_k, len(combined_scores))
        top_indices = np.argsort(combined_scores)[-top_k:][::-1]
        
        # Format results
        results = []
        for idx in top_indices:
            result = {
                'relevance_score': float(combined_scores[idx]),
                'semantic_score': float(similarities[idx]),
                'keyword_score': float(keyword_scores[idx]),
                **self.df.iloc[idx].to_dict()
            }
            results.append(result)
        
        return results

    def get_dataset_info(self):
        """Get information about the dataset"""
        if not self.dataset:
            return {}
        
        info = {
            'splits': list(self.dataset.keys()),
            'total_rows': sum(split.num_rows for split in self.dataset.values()),
            'columns': self.columns,
            'text_columns': self.text_columns,
            'sample_rows': len(self.df),
            'embeddings_shape': self.text_embeddings.shape
        }
        
        return info

def render_video_result(result):
    """Render a video result with enhanced display"""
    col1, col2 = st.columns([2, 1])
    
    with col1:
        if 'title' in result:
            st.markdown(f"**Title:** {result['title']}")
        if 'description' in result:
            st.markdown("**Description:**")
            st.write(result['description'])
        
        # Show timing information if available
        if 'start_time' in result and 'end_time' in result:
            st.markdown(f"**Time Range:** {result['start_time']}s - {result['end_time']}s")
        
        # Show additional metadata
        for key, value in result.items():
            if key not in ['title', 'description', 'start_time', 'end_time', 'duration', 
                          'relevance_score', 'semantic_score', 'keyword_score',
                          'video_id', 'youtube_id']:
                st.markdown(f"**{key.replace('_', ' ').title()}:** {value}")
    
    with col2:
        # Show search scores
        st.markdown("**Search Scores:**")
        cols = st.columns(3)
        cols[0].metric("Overall", f"{result['relevance_score']:.2%}")
        cols[1].metric("Semantic", f"{result['semantic_score']:.2%}")
        cols[2].metric("Keyword", f"{result['keyword_score']:.0f} matches")
        
        # Display video if available
        if 'youtube_id' in result:
            st.video(f"https://youtube.com/watch?v={result['youtube_id']}&t={result.get('start_time', 0)}")

def main():
    st.title("πŸŽ₯ Video Dataset Search")
    
    # Initialize search class
    searcher = DatasetSearcher()
    
    # Create tabs
    tab1, tab2 = st.tabs(["πŸ” Search", "πŸ“Š Dataset Info"])
    
    # ---- Tab 1: Search ----
    with tab1:
        st.subheader("Search Videos")
        col1, col2 = st.columns([3, 1])
        
        with col1:
            query = st.text_input("Search query:", 
                                value="" if st.session_state['initial_search_done'] else "")
        with col2:
            search_column = st.selectbox("Search in field:", 
                                       ["All Fields"] + st.session_state['search_columns'])
        
        col3, col4 = st.columns(2)
        with col3:
            num_results = st.slider("Number of results:", 1, 100, 20)
        with col4:
            search_button = st.button("πŸ” Search")
        
        if search_button and query:
            st.session_state['initial_search_done'] = True
            selected_column = None if search_column == "All Fields" else search_column
            
            with st.spinner("Searching..."):
                results = searcher.search(query, selected_column, num_results)
            
            st.session_state['search_history'].append({
                'query': query,
                'timestamp': datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
                'results': results[:5]
            })
            
            for i, result in enumerate(results, 1):
                with st.expander(
                    f"Result {i}: {result.get('title', result.get('description', 'No title'))[:100]}...", 
                    expanded=(i==1)
                ):
                    render_video_result(result)
    
    # ---- Tab 2: Dataset Info ----
    with tab2:
        st.subheader("Dataset Information")
        
        info = searcher.get_dataset_info()
        if info:
            st.write(f"### Dataset: {searcher.dataset_id}")
            st.write(f"- Total rows: {info['total_rows']:,}")
            st.write(f"- Available splits: {', '.join(info['splits'])}")
            st.write(f"- Number of columns: {len(info['columns'])}")
            st.write(f"- Searchable text columns: {', '.join(info['text_columns'])}")
            
            st.write("### Sample Data")
            st.dataframe(searcher.df.head())
            
            st.write("### Column Details")
            for col in info['columns']:
                st.write(f"- **{col}**: {searcher.df[col].dtype}")

    # Sidebar
    with st.sidebar:
        st.subheader("βš™οΈ Search History")
        if st.button("πŸ—‘οΈ Clear History"):
            st.session_state['search_history'] = []
            st.experimental_rerun()
        
        st.markdown("### Recent Searches")
        for entry in reversed(st.session_state['search_history'][-5:]):
            with st.expander(f"{entry['timestamp']}: {entry['query']}"):
                for i, result in enumerate(entry['results'], 1):
                    st.write(f"{i}. {result.get('title', result.get('description', 'No title'))[:100]}...")

if __name__ == "__main__":
    main()