|
|
|
|
|
write an automl streamlit python tensorflow keras application with mechanics that takes a CSV dataset, performs pandas profiling and generates the code to do classification |
|
Here is an example of an Automated Machine Learning (AutoML) Streamlit application that takes a CSV dataset, performs pandas profiling, and generates the code to do classification using TensorFlow and Keras: |
|
|
|
python |
|
Copy code |
|
import streamlit as st |
|
import pandas as pd |
|
import pandas_profiling |
|
from tensorflow.keras.models import Sequential |
|
from tensorflow.keras.layers import Dense |
|
from sklearn.model_selection import train_test_split |
|
|
|
st.set_page_config(page_title="AutoML Streamlit App", page_icon=":robot:", layout="wide") |
|
|
|
st.title("AutoML Streamlit App") |
|
|
|
# Upload a CSV dataset |
|
uploaded_file = st.file_uploader("Upload your dataset", type=["csv"]) |
|
if uploaded_file is not None: |
|
# Load the dataset and display the first 5 rows |
|
df = pd.read_csv(uploaded_file) |
|
st.dataframe(df.head()) |
|
|
|
# Perform pandas profiling and display the report |
|
profile = pandas_profiling.ProfileReport(df) |
|
st.write("Pandas Profiling Report:", profile) |
|
|
|
# Split the data into features and target variables |
|
X = df.drop(df.columns[-1], axis=1) |
|
y = df[df.columns[-1]] |
|
|
|
# Split the data into training and testing sets |
|
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) |
|
|
|
# Define a sequential model with TensorFlow and Keras |
|
model = Sequential() |
|
model.add(Dense(16, input_dim=X_train.shape[1], activation="relu")) |
|
model.add(Dense(1, activation="sigmoid")) |
|
|
|
# Compile the model |
|
model.compile(loss="binary_crossentropy", optimizer="adam", metrics=["accuracy"]) |
|
|
|
# Train the model |
|
model.fit(X_train, y_train, epochs=10, batch_size=32) |
|
|
|
# Evaluate the model on the test set |
|
test_loss, test_accuracy = model.evaluate(X_test, y_test) |
|
st.write("Test Accuracy:", test_accuracy) |
|
|
|
# Generate the code to do classification |
|
st.write("Generated Code:") |
|
st.code(""" |
|
import pandas as pd |
|
import tensorflow as tf |
|
from tensorflow.keras.models import Sequential |
|
from tensorflow.keras.layers import Dense |
|
|
|
# Load the dataset |
|
df = pd.read_csv("dataset.csv") |
|
|
|
# Split the data into features and target variables |
|
X = df.drop(df.columns[-1], axis=1) |
|
y = df[df.columns[-1]] |
|
|
|
# Define a sequential model with TensorFlow and Keras |
|
model = Sequential() |
|
model.add(Dense(16, input_dim=X.shape[1], activation="relu")) |
|
model.add(Dense(1, activation="sigmoid")) |
|
|
|
# Compile the model |
|
model.compile(loss="binary_crossentropy", optimizer=" |
|
|
|
|
|
|
|
Aaron Wacker |
|
continue writing the program above but simplify it and automatically generate a plotly visualization using treemap and sunburst plot from the dataset dynamically by interpreting the data types inside the CSV file |
|
Here is a simplified version of the AutoML Streamlit application that automatically generates a Plotly visualization using treemap and sunburst plots from the CSV dataset dynamically by interpreting the data types inside the file: |
|
|
|
python |
|
Copy code |
|
import streamlit as st |
|
import pandas as pd |
|
import plotly.express as px |
|
|
|
st.set_page_config(page_title="AutoML Streamlit App", page_icon=":robot:", layout="wide") |
|
|
|
st.title("AutoML Streamlit App") |
|
|
|
# Upload a CSV dataset |
|
uploaded_file = st.file_uploader("Upload your dataset", type=["csv"]) |
|
if uploaded_file is not None: |
|
# Load the dataset and display the first 5 rows |
|
df = pd.read_csv(uploaded_file) |
|
st.dataframe(df.head()) |
|
|
|
# Generate a treemap or sunburst plot based on data types |
|
numerical_cols = df.select_dtypes(include=["float", "int"]).columns |
|
categorical_cols = df.select_dtypes(include=["object"]).columns |
|
|
|
if len(numerical_cols) >= 2: |
|
fig = px.scatter_matrix(df, dimensions=numerical_cols) |
|
st.plotly_chart(fig) |
|
elif len(categorical_cols) >= 2: |
|
fig = px.treemap(df, path=categorical_cols) |
|
st.plotly_chart(fig) |
|
else: |
|
fig = px.sunburst(df, path=categorical_cols + numerical_cols) |
|
st.plotly_chart(fig) |
|
In this simplified version, we use Plotly Express to generate a scatter matrix plot for numerical data, a treemap plot for categorical data, and a sunburst plot for both numerical and categorical data. The type of plot generated is based on the number of numerical and categorical columns present in the dataset. |
|
|
|
|
|
|
|
Regenerate response |
|
|