fev-leaderboard / app.py
shchuro's picture
Update app
0737cdd
raw
history blame
3.36 kB
import fev
import gradio as gr
import pandas as pd
# Load the CSV data into a pandas DataFrame
df = pd.read_csv(
"https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/seasonal_naive.csv"
)
markdown_text = """
Hello world
"""
summary_urls = [
"https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/auto_arima.csv",
"https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/auto_ets.csv",
"https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/auto_theta.csv",
"https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/chronos_base.csv",
"https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/chronos_large.csv",
"https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/chronos_mini.csv",
"https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/chronos_small.csv",
"https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/chronos_tiny.csv",
"https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/chronos_bolt_base.csv",
"https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/chronos_bolt_mini.csv",
"https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/chronos_bolt_small.csv",
"https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/chronos_bolt_tiny.csv",
"https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/moirai_base.csv",
"https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/moirai_large.csv",
"https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/moirai_small.csv",
"https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/seasonal_naive.csv",
"https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/timesfm.csv",
]
selected_cols = ["gmean_relative_error", "avg_rank", "median_inference_time_s"]
rename_cols = {
"gmean_relative_error": "Average relative error",
"avg_rank": "Average rank",
"median_inference_time_s": "Median inference time (s)",
}
lb_mase = fev.leaderboard(summary_urls, metric_column="MASE")[selected_cols].rename(columns=rename_cols)
lb_wql = fev.leaderboard(summary_urls, metric_column="WQL")[selected_cols].rename(columns=rename_cols)
with gr.Blocks() as demo:
with gr.Tab("Leaderboard"):
gr.Markdown("## Point forecast accuracy (measured by MASE)")
gr.Dataframe(
value=lb_mase,
interactive=False,
)
gr.Markdown("## Probabilistic forecast accuracy (measured by WQL)")
gr.Dataframe(
value=lb_wql,
interactive=False,
)
with gr.Tab("About"):
gr.Markdown(markdown_text)
if __name__ == "__main__":
demo.launch()