Spaces:
Running
Running
File size: 3,364 Bytes
0737cdd fdb3d3e 5068c86 fdb3d3e e1ca246 fdb3d3e 0737cdd fdb3d3e e1ca246 0737cdd c1ea364 0737cdd f3548e9 c1ea364 fdb3d3e e1ca246 fdb3d3e 5068c86 e1ca246 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
import fev
import gradio as gr
import pandas as pd
# Load the CSV data into a pandas DataFrame
df = pd.read_csv(
"https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/seasonal_naive.csv"
)
markdown_text = """
Hello world
"""
summary_urls = [
"https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/auto_arima.csv",
"https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/auto_ets.csv",
"https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/auto_theta.csv",
"https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/chronos_base.csv",
"https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/chronos_large.csv",
"https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/chronos_mini.csv",
"https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/chronos_small.csv",
"https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/chronos_tiny.csv",
"https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/chronos_bolt_base.csv",
"https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/chronos_bolt_mini.csv",
"https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/chronos_bolt_small.csv",
"https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/chronos_bolt_tiny.csv",
"https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/moirai_base.csv",
"https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/moirai_large.csv",
"https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/moirai_small.csv",
"https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/seasonal_naive.csv",
"https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/timesfm.csv",
]
selected_cols = ["gmean_relative_error", "avg_rank", "median_inference_time_s"]
rename_cols = {
"gmean_relative_error": "Average relative error",
"avg_rank": "Average rank",
"median_inference_time_s": "Median inference time (s)",
}
lb_mase = fev.leaderboard(summary_urls, metric_column="MASE")[selected_cols].rename(columns=rename_cols)
lb_wql = fev.leaderboard(summary_urls, metric_column="WQL")[selected_cols].rename(columns=rename_cols)
with gr.Blocks() as demo:
with gr.Tab("Leaderboard"):
gr.Markdown("## Point forecast accuracy (measured by MASE)")
gr.Dataframe(
value=lb_mase,
interactive=False,
)
gr.Markdown("## Probabilistic forecast accuracy (measured by WQL)")
gr.Dataframe(
value=lb_wql,
interactive=False,
)
with gr.Tab("About"):
gr.Markdown(markdown_text)
if __name__ == "__main__":
demo.launch()
|