import fev import gradio as gr import pandas as pd # Load the CSV data into a pandas DataFrame df = pd.read_csv( "https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/seasonal_naive.csv" ) markdown_text = """ Hello world """ summary_urls = [ "https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/auto_arima.csv", "https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/auto_ets.csv", "https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/auto_theta.csv", "https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/chronos_base.csv", "https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/chronos_large.csv", "https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/chronos_mini.csv", "https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/chronos_small.csv", "https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/chronos_tiny.csv", "https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/chronos_bolt_base.csv", "https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/chronos_bolt_mini.csv", "https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/chronos_bolt_small.csv", "https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/chronos_bolt_tiny.csv", "https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/moirai_base.csv", "https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/moirai_large.csv", "https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/moirai_small.csv", "https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/seasonal_naive.csv", "https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/timesfm.csv", ] selected_cols = ["gmean_relative_error", "avg_rank", "median_inference_time_s"] rename_cols = { "gmean_relative_error": "Average relative error", "avg_rank": "Average rank", "median_inference_time_s": "Median inference time (s)", } lb_mase = fev.leaderboard(summary_urls, metric_column="MASE")[selected_cols].rename(columns=rename_cols) lb_wql = fev.leaderboard(summary_urls, metric_column="WQL")[selected_cols].rename(columns=rename_cols) with gr.Blocks() as demo: with gr.Tab("Leaderboard"): gr.Markdown("## Point forecast accuracy (measured by MASE)") gr.Dataframe( value=lb_mase, interactive=False, ) gr.Markdown("## Probabilistic forecast accuracy (measured by WQL)") gr.Dataframe( value=lb_wql, interactive=False, ) with gr.Tab("About"): gr.Markdown(markdown_text) if __name__ == "__main__": demo.launch()