Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,364 Bytes
7bed26b 3627bcb dc51cfe 36e4f2e c030bd6 5e758bd 36e4f2e 69c4230 55d4b6f acb05a8 69c4230 acb05a8 7bed26b 69c4230 8a4f0ad 3627bcb d7b7455 55d4b6f 8a4f0ad 3627bcb acb05a8 7065ee0 3627bcb 7dee543 3627bcb acb05a8 c030bd6 d7b7455 acb05a8 7bed26b acb05a8 36e4f2e acb05a8 3627bcb acb05a8 70c7fbf 55d4b6f acb05a8 8a4f0ad acb05a8 3627bcb 70c7fbf 3627bcb acb05a8 70c7fbf acb05a8 3627bcb acb05a8 3627bcb acb05a8 1238eb5 acb05a8 a93f30b 3627bcb acb05a8 3627bcb acb05a8 3627bcb acb05a8 3627bcb acb05a8 e7b97f5 acb05a8 3627bcb b4b957f 3627bcb 36e4f2e 3627bcb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
import gradio as gr
import spaces
import supervision as sv
import PIL.Image as Image
from ultralytics import YOLO
from huggingface_hub import hf_hub_download, HfApi
global repo_id
def download_models(model_id):
hf_hub_download(repo_id, filename = f"{model_id}", local_dir = f"./")
return f"./{model_id}"
def get_model_filenames(repo_id, file_extension = ".pt"):
api = HfApi()
files = api.list_repo_files(repo_id)
model_filenames = [file for file in files if file.endswith(file_extension)]
return model_filenames
repo_id = "atalaydenknalbant/asl-yolo-models"
model_filenames = get_model_filenames(repo_id)
print("Model filenames:", model_filenames)
box_annotator = sv.BoxAnnotator()
category_dict = {0: 'A', 1: 'B', 2: 'C', 3: 'D', 4: 'E', 5: 'F', 6: 'G', 7: 'H', 8: 'I',
9: 'J', 10: 'K', 11: 'L', 12: 'M', 13: 'N', 14: 'O', 15: 'P', 16: 'Q',
17: 'R', 18: 'S', 19: 'T', 20: 'U', 21: 'V', 22: 'W', 23: 'X', 24: 'Y', 25: 'Z'}
@spaces.GPU
def yolo_inference(image, model_id, conf_threshold, iou_threshold, max_detection):
model_path = download_models(model_id)
model = YOLO(model_path)
results = model(source=image, imgsz=640, iou=iou_threshold, conf=conf_threshold, verbose=False, max_det=max_detection)[0]
detections = sv.Detections.from_ultralytics(results)
labels = [
f"{category_dict[class_id]} {confidence:.2f}"
for class_id, confidence in zip(detections.class_id, detections.confidence)
]
annotated_image = box_annotator.annotate(image, detections=detections, labels=labels)
return annotated_image
def app():
with gr.Blocks():
with gr.Row():
with gr.Column():
image = gr.Image(type="pil", label="Image", interactive=True)
model_id = gr.Dropdown(
label="Model",
choices=model_filenames,
value=model_filenames[0] if model_filenames else "",
)
conf_threshold = gr.Slider(
label="Confidence Threshold",
minimum=0.1,
maximum=1.0,
step=0.1,
value=0.25,
)
iou_threshold = gr.Slider(
label="IoU Threshold",
minimum=0.1,
maximum=1.0,
step=0.1,
value=0.45,
)
max_detection = gr.Slider(
label="Max Detection",
minimum=1,
step=1,
value=1,
)
yolov_infer = gr.Button(value="Detect Objects")
with gr.Column():
output_image = gr.Image(type="pil", label="Annotated Image", interactive=False)
yolov_infer.click(
fn=yolo_inference,
inputs=[
image,
model_id,
conf_threshold,
iou_threshold,
max_detection,
],
outputs=[output_image],
)
gr.Examples(
examples=[
[
"b.jpg",
"yolov10x.pt",
0.25,
0.45,
1,
],
[
"a.jpg",
"yolov10s.pt",
0.25,
0.45,
1,
],
[
"y.jpg",
"yolov10x.pt",
0.25,
0.45,
1,
],
],
fn=yolo_inference,
inputs=[
image,
model_id,
conf_threshold,
iou_threshold,
max_detection,
],
outputs=[output_image],
cache_examples="lazy",
)
gradio_app = gr.Blocks()
with gradio_app:
gr.HTML(
"""
<h1 style='text-align: center'>
YOLO Powered ASL(American Sign Language) Letter Detector PSA: It can't detect J or Z
</h1>
""")
with gr.Row():
with gr.Column():
app()
gradio_app.launch(debug=True) |