Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,48 +1,117 @@
|
|
1 |
import gradio as gr
|
2 |
import spaces
|
3 |
import PIL.Image as Image
|
4 |
-
from ultralytics import YOLO
|
|
|
5 |
|
6 |
|
|
|
|
|
|
|
7 |
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
iou=iou_threshold,
|
18 |
-
show_labels=True,
|
19 |
-
show_conf=True,
|
20 |
-
imgsz=416,
|
21 |
-
max_det=1
|
22 |
-
)
|
23 |
-
|
24 |
-
for r in results:
|
25 |
-
im_array = r.plot()
|
26 |
-
im = Image.fromarray(im_array[..., ::-1])
|
27 |
-
|
28 |
-
return im
|
29 |
-
|
30 |
-
|
31 |
-
asl = gr.Interface(
|
32 |
-
fn=predict_image,
|
33 |
-
inputs=[
|
34 |
-
gr.Image(type="pil", label="Upload Image"),
|
35 |
-
gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence threshold"),
|
36 |
-
gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU threshold")
|
37 |
-
],
|
38 |
-
outputs=gr.Image(type="pil", label="Result"),
|
39 |
-
title="ASL Detector YOLOV9e",
|
40 |
-
description="Upload images for inference. The Ultralytics YOLOV9e model is used by default. Letter Z is not supported.",
|
41 |
-
examples=[
|
42 |
-
["y.jpg", 0.25, 0.45],
|
43 |
-
["b.jpg", 0.25, 0.45],
|
44 |
]
|
45 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
-
|
48 |
-
asl.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import spaces
|
3 |
import PIL.Image as Image
|
4 |
+
from ultralytics import YOLO, YOLOv10
|
5 |
+
from huggingface_hub import hf_hub_download
|
6 |
|
7 |
|
8 |
+
def download_models(model_id):
|
9 |
+
hf_hub_download("atalaydenknalbant/", filename="asl-models", local_dir=f"./")
|
10 |
+
return f"./{model_id}"
|
11 |
|
12 |
|
13 |
+
|
14 |
+
box_annotator = sv.BoxAnnotator()
|
15 |
+
category_dict = {'A': 0, 'B': 1, 'C': 2, 'D': 3, 'E': 4, 'F': 5, 'G': 6, 'H': 7, 'I': 8, 'J': 9,
|
16 |
+
'K': 10, 'L': 11, 'M': 12, 'N': 13, 'O': 14, 'P': 15, 'Q': 16, 'R': 17, 'S': 18,
|
17 |
+
'T': 19, 'U': 20, 'V': 21, 'W': 22, 'X': 23, 'Y': 24, 'Z': 25}
|
18 |
+
|
19 |
+
|
20 |
+
|
21 |
+
@spaces.GPU(duration=200)
|
22 |
+
def yolo_inference(image, model_id, conf_threshold, iou_threshold):
|
23 |
+
model_path = download_models(model_id)
|
24 |
+
if model_id[:7] == 'yolov10':
|
25 |
+
model = YOLOv10(model_path)
|
26 |
+
else:
|
27 |
+
model = YOLO(model_path)
|
28 |
+
results = model(source=image, imgsz=416, iou=iou_threshold, conf=conf_threshold, verbose=False, max_det=1)[0]
|
29 |
+
detections = sv.Detections.from_ultralytics(results)
|
30 |
|
31 |
+
labels = [
|
32 |
+
f"{category_dict[class_id]} {confidence:.2f}"
|
33 |
+
for class_id, confidence in zip(detections.class_id, detections.confidence)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
]
|
35 |
+
annotated_image = box_annotator.annotate(image, detections=detections, labels=labels)
|
36 |
+
|
37 |
+
return annotated_image
|
38 |
+
|
39 |
+
def app():
|
40 |
+
with gr.Blocks():
|
41 |
+
with gr.Row():
|
42 |
+
with gr.Column():
|
43 |
+
image = gr.Image(type="pil", label="Image")
|
44 |
+
|
45 |
+
model_id = gr.Dropdown(
|
46 |
+
label="Model",
|
47 |
+
choices=[
|
48 |
+
"yolov10x.pt",
|
49 |
+
"yolov10s.pt",
|
50 |
+
"yolov9e.pt",
|
51 |
+
"yolov8x.pt",
|
52 |
+
],
|
53 |
+
value="yolov10s.pt",
|
54 |
+
)
|
55 |
+
conf_threshold = gr.Slider(
|
56 |
+
label="Confidence Threshold",
|
57 |
+
minimum=0.1,
|
58 |
+
maximum=1.0,
|
59 |
+
step=0.1,
|
60 |
+
value=0.25,
|
61 |
+
)
|
62 |
+
iou_threshold = gr.Slider(
|
63 |
+
label="IoU Threshold",
|
64 |
+
minimum=0.1,
|
65 |
+
maximum=1.0,
|
66 |
+
step=0.1,
|
67 |
+
value=0.45,
|
68 |
+
)
|
69 |
+
yolov10_infer = gr.Button(value="Detect Objects")
|
70 |
+
|
71 |
+
with gr.Column():
|
72 |
+
output_image = gr.Image(type="pil", label="Annotated Image")
|
73 |
+
|
74 |
+
yolov10_infer.click(
|
75 |
+
fn=yolo_inference,
|
76 |
+
inputs=[
|
77 |
+
image,
|
78 |
+
model_id,
|
79 |
+
conf_threshold,
|
80 |
+
iou_threshold,
|
81 |
+
],
|
82 |
+
outputs=[output_image],
|
83 |
+
)
|
84 |
+
|
85 |
+
gr.Examples(
|
86 |
+
examples=[
|
87 |
+
[
|
88 |
+
"b.jpg",
|
89 |
+
"yolov10x.pt",
|
90 |
+
0.25,
|
91 |
+
0.45,
|
92 |
+
],
|
93 |
+
[
|
94 |
+
"y.jpg",
|
95 |
+
"yolov10x.pt",
|
96 |
+
0.25,
|
97 |
+
0.45,
|
98 |
+
],
|
99 |
+
],
|
100 |
+
fn=yolo_inference,
|
101 |
+
inputs=[
|
102 |
+
image,
|
103 |
+
model_id,
|
104 |
+
conf_threshold,
|
105 |
+
iou_threshold,
|
106 |
+
],
|
107 |
+
outputs=[output_image],
|
108 |
+
cache_examples=True,
|
109 |
+
)
|
110 |
+
|
111 |
+
gradio_app = gr.Blocks()
|
112 |
+
with gradio_app:
|
113 |
+
with gr.Row():
|
114 |
+
with gr.Column():
|
115 |
+
app()
|
116 |
|
117 |
+
gradio_app.launch(debug=True)
|
|