Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,28 +1,33 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
import supervision as sv
|
3 |
import PIL.Image as Image
|
4 |
from ultralytics import YOLO, YOLOv10
|
5 |
from huggingface_hub import hf_hub_download
|
6 |
-
import spaces
|
7 |
|
8 |
|
9 |
def download_models(model_id):
|
10 |
hf_hub_download("atalaydenknalbant/asl-models", filename=f"{model_id}", local_dir=f"./")
|
11 |
return f"./{model_id}"
|
12 |
|
|
|
|
|
13 |
box_annotator = sv.BoxAnnotator()
|
14 |
category_dict = {0: 'A', 1: 'B', 2: 'C', 3: 'D', 4: 'E', 5: 'F', 6: 'G', 7: 'H', 8: 'I',
|
15 |
9: 'J', 10: 'K', 11: 'L', 12: 'M', 13: 'N', 14: 'O', 15: 'P', 16: 'Q',
|
16 |
17: 'R', 18: 'S', 19: 'T', 20: 'U', 21: 'V', 22: 'W', 23: 'X', 24: 'Y', 25: 'Z'}
|
17 |
|
|
|
|
|
|
|
18 |
@spaces.GPU(duration=200)
|
19 |
-
def yolo_inference(image, model_id, conf_threshold, iou_threshold):
|
20 |
model_path = download_models(model_id)
|
21 |
if model_id[:7] == 'yolov10':
|
22 |
model = YOLOv10(model_path)
|
23 |
else:
|
24 |
model = YOLO(model_path)
|
25 |
-
results = model(source=image, imgsz=416, iou=iou_threshold, conf=conf_threshold, verbose=False, max_det=
|
26 |
detections = sv.Detections.from_ultralytics(results)
|
27 |
|
28 |
labels = [
|
@@ -34,7 +39,7 @@ def yolo_inference(image, model_id, conf_threshold, iou_threshold):
|
|
34 |
return annotated_image
|
35 |
|
36 |
def app():
|
37 |
-
with gr.Blocks()
|
38 |
with gr.Row():
|
39 |
with gr.Column():
|
40 |
image = gr.Image(type="pil", label="Image")
|
@@ -63,18 +68,26 @@ def app():
|
|
63 |
step=0.1,
|
64 |
value=0.45,
|
65 |
)
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
with gr.Column():
|
69 |
output_image = gr.Image(type="pil", label="Annotated Image")
|
70 |
|
71 |
-
|
72 |
fn=yolo_inference,
|
73 |
inputs=[
|
74 |
image,
|
75 |
model_id,
|
76 |
conf_threshold,
|
77 |
iou_threshold,
|
|
|
78 |
],
|
79 |
outputs=[output_image],
|
80 |
)
|
@@ -83,15 +96,17 @@ def app():
|
|
83 |
examples=[
|
84 |
[
|
85 |
"a.jpg",
|
86 |
-
"
|
87 |
0.25,
|
88 |
0.45,
|
|
|
89 |
],
|
90 |
[
|
91 |
"y.jpg",
|
92 |
"yolov10x.pt",
|
93 |
0.25,
|
94 |
0.45,
|
|
|
95 |
],
|
96 |
],
|
97 |
fn=yolo_inference,
|
@@ -100,11 +115,16 @@ def app():
|
|
100 |
model_id,
|
101 |
conf_threshold,
|
102 |
iou_threshold,
|
|
|
103 |
],
|
104 |
outputs=[output_image],
|
105 |
cache_examples="lazy",
|
106 |
)
|
107 |
|
108 |
-
|
|
|
|
|
|
|
|
|
109 |
|
110 |
-
|
|
|
1 |
import gradio as gr
|
2 |
+
import spaces
|
3 |
import supervision as sv
|
4 |
import PIL.Image as Image
|
5 |
from ultralytics import YOLO, YOLOv10
|
6 |
from huggingface_hub import hf_hub_download
|
|
|
7 |
|
8 |
|
9 |
def download_models(model_id):
|
10 |
hf_hub_download("atalaydenknalbant/asl-models", filename=f"{model_id}", local_dir=f"./")
|
11 |
return f"./{model_id}"
|
12 |
|
13 |
+
|
14 |
+
|
15 |
box_annotator = sv.BoxAnnotator()
|
16 |
category_dict = {0: 'A', 1: 'B', 2: 'C', 3: 'D', 4: 'E', 5: 'F', 6: 'G', 7: 'H', 8: 'I',
|
17 |
9: 'J', 10: 'K', 11: 'L', 12: 'M', 13: 'N', 14: 'O', 15: 'P', 16: 'Q',
|
18 |
17: 'R', 18: 'S', 19: 'T', 20: 'U', 21: 'V', 22: 'W', 23: 'X', 24: 'Y', 25: 'Z'}
|
19 |
|
20 |
+
|
21 |
+
|
22 |
+
|
23 |
@spaces.GPU(duration=200)
|
24 |
+
def yolo_inference(image, model_id, conf_threshold, iou_threshold, max_detection):
|
25 |
model_path = download_models(model_id)
|
26 |
if model_id[:7] == 'yolov10':
|
27 |
model = YOLOv10(model_path)
|
28 |
else:
|
29 |
model = YOLO(model_path)
|
30 |
+
results = model(source=image, imgsz=416, iou=iou_threshold, conf=conf_threshold, verbose=False, max_det=max_detection)[0]
|
31 |
detections = sv.Detections.from_ultralytics(results)
|
32 |
|
33 |
labels = [
|
|
|
39 |
return annotated_image
|
40 |
|
41 |
def app():
|
42 |
+
with gr.Blocks():
|
43 |
with gr.Row():
|
44 |
with gr.Column():
|
45 |
image = gr.Image(type="pil", label="Image")
|
|
|
68 |
step=0.1,
|
69 |
value=0.45,
|
70 |
)
|
71 |
+
|
72 |
+
max_detection = gr.Slider(
|
73 |
+
label="Max Detection",
|
74 |
+
minimum=1.0,
|
75 |
+
step=1.0,
|
76 |
+
value=1.0,
|
77 |
+
)
|
78 |
+
yolov_infer = gr.Button(value="Detect Objects")
|
79 |
|
80 |
with gr.Column():
|
81 |
output_image = gr.Image(type="pil", label="Annotated Image")
|
82 |
|
83 |
+
yolov_infer.click(
|
84 |
fn=yolo_inference,
|
85 |
inputs=[
|
86 |
image,
|
87 |
model_id,
|
88 |
conf_threshold,
|
89 |
iou_threshold,
|
90 |
+
max_detection,
|
91 |
],
|
92 |
outputs=[output_image],
|
93 |
)
|
|
|
96 |
examples=[
|
97 |
[
|
98 |
"a.jpg",
|
99 |
+
"yolov10s.pt",
|
100 |
0.25,
|
101 |
0.45,
|
102 |
+
1,
|
103 |
],
|
104 |
[
|
105 |
"y.jpg",
|
106 |
"yolov10x.pt",
|
107 |
0.25,
|
108 |
0.45,
|
109 |
+
1,
|
110 |
],
|
111 |
],
|
112 |
fn=yolo_inference,
|
|
|
115 |
model_id,
|
116 |
conf_threshold,
|
117 |
iou_threshold,
|
118 |
+
max_detection,
|
119 |
],
|
120 |
outputs=[output_image],
|
121 |
cache_examples="lazy",
|
122 |
)
|
123 |
|
124 |
+
gradio_app = gr.Blocks()
|
125 |
+
with gradio_app:
|
126 |
+
with gr.Row():
|
127 |
+
with gr.Column():
|
128 |
+
app()
|
129 |
|
130 |
+
gradio_app.launch(debug=True)
|