Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,873 Bytes
7bed26b 3627bcb dc51cfe 36e4f2e acb05a8 72af4b9 36e4f2e acb05a8 e1d655d acb05a8 7bed26b 5f4dc46 8a4f0ad 3627bcb 92e4785 8a4f0ad 3627bcb acb05a8 7065ee0 3627bcb 7dee543 3627bcb acb05a8 3627bcb acb05a8 7bed26b acb05a8 36e4f2e acb05a8 3627bcb acb05a8 70c7fbf acb05a8 8a4f0ad acb05a8 8a4f0ad acb05a8 3627bcb 70c7fbf 3627bcb acb05a8 70c7fbf acb05a8 3627bcb acb05a8 3627bcb acb05a8 1238eb5 acb05a8 a93f30b 3627bcb acb05a8 3627bcb acb05a8 3627bcb acb05a8 3627bcb acb05a8 e7b97f5 acb05a8 3627bcb b4b957f 3627bcb 36e4f2e 3627bcb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
import gradio as gr
import spaces
import supervision as sv
import PIL.Image as Image
from ultralytics import YOLO, YOLOv10
from huggingface_hub import hf_hub_download
def download_models(model_id):
hf_hub_download("atalaydenknalbant/asl-models", filename=f"{model_id}", local_dir=f"./")
return f"./{model_id}"
def get_model_filenames(repo_id="atalaydenknalbant/asl-models", file_extension=".pt"):
api = HfApi()
files = api.list_repo_files(repo_id)
model_filenames = [file for file in files if file.endswith(file_extension)]
return model_filenames
model_filenames = get_model_filenames("atalaydenknalbant/asl-models")
print("Model filenames:", model_filenames)
box_annotator = sv.BoxAnnotator()
category_dict = {0: 'A', 1: 'B', 2: 'C', 3: 'D', 4: 'E', 5: 'F', 6: 'G', 7: 'H', 8: 'I',
9: 'J', 10: 'K', 11: 'L', 12: 'M', 13: 'N', 14: 'O', 15: 'P', 16: 'Q',
17: 'R', 18: 'S', 19: 'T', 20: 'U', 21: 'V', 22: 'W', 23: 'X', 24: 'Y', 25: 'Z'}
@spaces.GPU
def yolo_inference(image, model_id, conf_threshold, iou_threshold, max_detection):
model_path = download_models(model_id)
if model_id[:7] == 'yolov10':
model = YOLOv10(model_path)
else:
model = YOLO(model_path)
results = model(source=image, imgsz=416, iou=iou_threshold, conf=conf_threshold, verbose=False, max_det=max_detection)[0]
detections = sv.Detections.from_ultralytics(results)
labels = [
f"{category_dict[class_id]} {confidence:.2f}"
for class_id, confidence in zip(detections.class_id, detections.confidence)
]
annotated_image = box_annotator.annotate(image, detections=detections, labels=labels)
return annotated_image
def app():
with gr.Blocks():
with gr.Row():
with gr.Column():
image = gr.Image(type="pil", label="Image", interactive=True)
# model_id = gr.Dropdown(
# label="Model",
# choices=[
# "yolov10x.pt",
# "yolov10s.pt",
# "yolov9e.pt",
# "yolov9s.pt",
# "yolov8x.pt",
# ],
# value="yolov10s.pt",
# )
model_id = gr.Dropdown(
label="Model",
choices=model_filenames,
value=model_filenames[0] if model_filenames else "",
)
conf_threshold = gr.Slider(
label="Confidence Threshold",
minimum=0.1,
maximum=1.0,
step=0.1,
value=0.25,
)
iou_threshold = gr.Slider(
label="IoU Threshold",
minimum=0.1,
maximum=1.0,
step=0.1,
value=0.45,
)
max_detection = gr.Slider(
label="Max Detection",
minimum=1,
step=1,
value=1,
)
yolov_infer = gr.Button(value="Detect Objects")
with gr.Column():
output_image = gr.Image(type="pil", label="Annotated Image", interactive=False)
yolov_infer.click(
fn=yolo_inference,
inputs=[
image,
model_id,
conf_threshold,
iou_threshold,
max_detection,
],
outputs=[output_image],
)
gr.Examples(
examples=[
[
"b.jpg",
"yolov10x.pt",
0.25,
0.45,
1,
],
[
"a.jpg",
"yolov10s.pt",
0.25,
0.45,
1,
],
[
"y.jpg",
"yolov10x.pt",
0.25,
0.45,
1,
],
],
fn=yolo_inference,
inputs=[
image,
model_id,
conf_threshold,
iou_threshold,
max_detection,
],
outputs=[output_image],
cache_examples="lazy",
)
gradio_app = gr.Blocks()
with gradio_app:
gr.HTML(
"""
<h1 style='text-align: center'>
YOLO Powered ASL(American Sign Language) Letter Detector PSA: It can't detect J or Z
</h1>
""")
with gr.Row():
with gr.Column():
app()
gradio_app.launch(debug=True) |