Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,077 Bytes
7bed26b 3627bcb dc51cfe 36e4f2e acb05a8 72af4b9 36e4f2e acb05a8 e1d655d acb05a8 7bed26b 3627bcb acb05a8 7065ee0 3627bcb 9df6f17 3627bcb acb05a8 3627bcb acb05a8 7bed26b acb05a8 36e4f2e acb05a8 3627bcb acb05a8 70c7fbf acb05a8 3627bcb 70c7fbf 3627bcb acb05a8 70c7fbf acb05a8 3627bcb acb05a8 3627bcb acb05a8 1238eb5 acb05a8 a93f30b 3627bcb acb05a8 3627bcb acb05a8 3627bcb acb05a8 3627bcb acb05a8 e7b97f5 acb05a8 3627bcb 36e4f2e 3627bcb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
import gradio as gr
import spaces
import supervision as sv
import PIL.Image as Image
from ultralytics import YOLO, YOLOv10
from huggingface_hub import hf_hub_download
def download_models(model_id):
hf_hub_download("atalaydenknalbant/asl-models", filename=f"{model_id}", local_dir=f"./")
return f"./{model_id}"
box_annotator = sv.BoxAnnotator()
category_dict = {0: 'A', 1: 'B', 2: 'C', 3: 'D', 4: 'E', 5: 'F', 6: 'G', 7: 'H', 8: 'I',
9: 'J', 10: 'K', 11: 'L', 12: 'M', 13: 'N', 14: 'O', 15: 'P', 16: 'Q',
17: 'R', 18: 'S', 19: 'T', 20: 'U', 21: 'V', 22: 'W', 23: 'X', 24: 'Y', 25: 'Z'}
@spaces.GPU(duration=200)
def yolo_inference(image, model_id, conf_threshold, iou_threshold, max_detection):
model_path = download_models(model_id)
if model_id[:7] == 'yolov10':
model = YOLOv10(model_path)
else:
model = YOLO(model_path)
results = model(source=image, imgsz=416, iou=iou_threshold, conf=conf_threshold, verbose=False, max_det=max_detection)[0]
detections = sv.Detections.from_ultralytics(results)
labels = [
f"{category_dict[class_id]} {confidence:.2f}"
for class_id, confidence in zip(detections.class_id, detections.confidence)
]
annotated_image = box_annotator.annotate(image, detections=detections, labels=labels)
return annotated_image
def app():
with gr.Blocks():
with gr.Row():
with gr.Column():
image = gr.Image(type="pil", label="Image", interactive=True)
model_id = gr.Dropdown(
label="Model",
choices=[
"yolov10x.pt",
"yolov10s.pt",
"yolov9e.pt",
"yolov8x.pt",
],
value="yolov10s.pt",
)
conf_threshold = gr.Slider(
label="Confidence Threshold",
minimum=0.1,
maximum=1.0,
step=0.1,
value=0.25,
)
iou_threshold = gr.Slider(
label="IoU Threshold",
minimum=0.1,
maximum=1.0,
step=0.1,
value=0.45,
)
max_detection = gr.Slider(
label="Max Detection",
minimum=1,
step=1,
value=1,
)
yolov_infer = gr.Button(value="Detect Objects")
with gr.Column():
output_image = gr.Image(type="pil", label="Annotated Image", interactive=False)
yolov_infer.click(
fn=yolo_inference,
inputs=[
image,
model_id,
conf_threshold,
iou_threshold,
max_detection,
],
outputs=[output_image],
)
gr.Examples(
examples=[
[
"b.jpg",
"yolov10x.pt",
0.25,
0.45,
1,
],
[
"a.jpg",
"yolov10s.pt",
0.25,
0.45,
1,
],
[
"y.jpg",
"yolov10x.pt",
0.25,
0.45,
1,
],
],
fn=yolo_inference,
inputs=[
image,
model_id,
conf_threshold,
iou_threshold,
max_detection,
],
outputs=[output_image],
cache_examples="lazy",
)
gradio_app = gr.Blocks()
with gradio_app:
with gr.Row():
with gr.Column():
app()
gradio_app.launch(debug=True) |