File size: 18,034 Bytes
87a12d2 1f0244d 87a12d2 e3ed184 ce76c69 bedc750 b621c94 e3ed184 45454da e3ed184 45454da e3ed184 e06ca4c 38a3645 e3ed184 f78fa12 3d26bbd f78fa12 554bff4 f78fa12 7069050 f78fa12 7069050 f78fa12 7069050 f78fa12 5f91162 7069050 f78fa12 7069050 f78fa12 7069050 87a12d2 e3ed184 e06ca4c ffd38a4 554bff4 b621c94 fa9d7e5 e3ed184 fa9d7e5 e3ed184 9c77576 e0b299c 554bff4 9c77576 554bff4 e3ed184 2143851 e3ed184 846a34c e3ed184 38a3645 78b066f 7069050 433c793 9c77576 78b066f 7069050 846a34c 7069050 846a34c 78b066f 7069050 77b1713 7069050 433c793 7069050 433c793 7069050 78b066f 7069050 433c793 7069050 433c793 7069050 433c793 7069050 433c793 7069050 433c793 7069050 433c793 7069050 433c793 7069050 433c793 7069050 433c793 7069050 433c793 7069050 433c793 7069050 433c793 7069050 433c793 7069050 78b066f e3ed184 1d606db e3ed184 787a51f e3ed184 433c793 e3ed184 787a51f e3ed184 433c793 fa9d7e5 433c793 fa9d7e5 433c793 787a51f 433c793 fa9d7e5 433c793 e3ed184 1f0244d e3ed184 1f0244d e3ed184 45454da e3ed184 6cc3f59 1f0244d 599612f 70199bd ffd38a4 b8a6849 70199bd b8a6849 e3ed184 b8a6849 02df4a2 b8a6849 846a34c 02df4a2 025bef1 e367927 b8a6849 d3eb29d b8a6849 e3ed184 e06ca4c ffd38a4 b8a6849 e3ed184 70199bd ffd38a4 70199bd 71a3f78 ffd38a4 b8a6849 70199bd a3d5514 70199bd e3ed184 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 |
#=========================================================================
# https://huggingface.co/spaces/asigalov61/Score-2-Performance-Transformer
#=========================================================================
import os
import time as reqtime
import datetime
from pytz import timezone
import copy
from itertools import groupby
import tqdm
import spaces
import gradio as gr
import torch
from x_transformer_1_23_2 import *
import random
import TMIDIX
from midi_to_colab_audio import midi_to_colab_audio
from huggingface_hub import hf_hub_download
# =================================================================================================
print('Loading model...')
SEQ_LEN = 1802
PAD_IDX = 771
DEVICE = 'cuda' # 'cpu'
# instantiate the model
model = TransformerWrapper(
num_tokens = PAD_IDX+1,
max_seq_len = SEQ_LEN,
attn_layers = Decoder(dim = 1024,
depth = 8,
heads = 8,
rotary_pos_emb=True,
attn_flash = True
)
)
model = AutoregressiveWrapper(model, ignore_index = PAD_IDX)
print('=' * 70)
print('Loading model checkpoint...')
model_checkpoint = hf_hub_download(repo_id='asigalov61/Score-2-Performance-Transformer',
filename='Score_2_Performance_Transformer_Final_Small_Trained_Model_4496_steps_1.5185_loss_0.5589_acc.pth'
)
model.load_state_dict(torch.load(model_checkpoint, map_location='cpu', weights_only=True))
model = torch.compile(model, mode='max-autotune')
dtype = torch.bfloat16
ctx = torch.amp.autocast(device_type=DEVICE, dtype=dtype)
print('=' * 70)
print('Done!')
print('=' * 70)
# =================================================================================================
def load_midi(midi_file):
print('Loading MIDI...')
raw_score = TMIDIX.midi2single_track_ms_score(midi_file)
escore_notes = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True)
if escore_notes[0]:
escore_notes = TMIDIX.augment_enhanced_score_notes(escore_notes[0], timings_divider=16)
pe = escore_notes[0]
melody_chords = []
seen = []
for e in escore_notes:
if e[3] != 9:
#=======================================================
dtime = max(0, min(255, e[1]-pe[1]))
if dtime != 0:
seen = []
# Durations
dur = max(1, min(255, e[2]))
# Pitches
ptc = max(1, min(127, e[4]))
vel = max(1, min(127, e[5]))
if ptc not in seen:
melody_chords.append([dtime, dur, ptc, vel])
seen.append(ptc)
pe = e
print('=' * 70)
print('Number of notes in a composition:', len(melody_chords))
print('=' * 70)
src_melody_chords_f = []
for i in range(0, len(melody_chords), 150):
chunk = melody_chords[i:i+300]
src = []
for mm in chunk:
src.append([mm[0], mm[2]+256, mm[1]+384, mm[3]+640])
clen = len(src)
if clen < 300:
chunk_mult = (300 // clen) + 1
src += src * chunk_mult
src_melody_chords_f.append([clen, src[:300]])
print('Done!')
print('=' * 70)
print('Number of composition chunks:', len(src_melody_chords_f))
print('=' * 70)
return src_melody_chords_f
# =================================================================================================
@spaces.GPU
def Convert_Score_to_Performance(input_midi,
input_midi_type,
input_conv_type,
input_number_prime_notes,
input_number_conv_notes,
input_model_dur_top_k,
input_model_dur_temperature,
input_model_vel_temperature
):
#===============================================================================
print('=' * 70)
print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
start_time = reqtime.time()
print('=' * 70)
fn = os.path.basename(input_midi)
fn1 = fn.split('.')[0]
print('=' * 70)
print('Requested settings:')
print('=' * 70)
print('Input MIDI file name:', fn)
print('Input MIDI type:', input_midi_type)
print('Conversion type:', input_conv_type)
print('Number of prime notes:', input_number_prime_notes)
print('Number of notes to convert:', input_number_conv_notes)
print('Model durations sampling top value:', input_model_dur_top_k)
print('Model durations temperature:', input_model_dur_temperature)
print('Model velocities temperature:', input_model_vel_temperature)
print('=' * 70)
#==================================================================
src_melody_chords_f = load_midi(input_midi.name)
#==================================================================
print('Sample output events', src_melody_chords_f[0][1][:3])
print('=' * 70)
print('Generating...')
model.to(DEVICE)
model.eval()
#==================================================================
num_prime_notes = input_number_prime_notes # Priming improves the results but it is not necessary and you can set it to zero
dur_top_k = input_model_dur_top_k # Use k == 1 if src composition is score and k > 1 if src composition is performance
dur_temperature = input_model_dur_temperature # For best results, durations temperature should be more than 1.0 but less than velocities temperature
vel_temperature = input_model_vel_temperature # For best results, velocities temperature must be larger than 1.3 and larger than durations temperature
#==================================================================
if input_midi_type == 'Score':
dur_top_k = 1
dur_temperature = 1.1
vel_temperature = 1.5
elif input_midi_type == 'Performance':
dur_top_k = 100
dur_temperature = 1.5
vel_temperature = 1.9
else:
dur_top_k = input_model_dur_top_k # Use k == 1 if src composition is score and k > 1 if src composition is performance
dur_temperature = input_model_dur_temperature # For best results, durations temperature should be more than 1.0 but less than velocities temperature
vel_temperature = input_model_vel_temperature
final_song = []
for cc, (song_chunk_len, song_chunk) in enumerate(src_melody_chords_f):
print('=' * 70)
print('Rendering song chunk #', cc)
print('=' * 70)
#========================================================================
song = [768]
if cc == 0:
for m in song_chunk:
song.extend(m[:2])
song.append(769)
sidx = 0
eidx = 300
else:
for m in song_chunk[:150]:
psrc.extend(m[:2])
psrc.append(769)
song = copy.deepcopy(psrc + ptrg)
sidx = 150
eidx = 300
#========================================================================
for i in tqdm.tqdm(range(sidx, eidx)):
song.extend(song_chunk[i][:2])
if 'Durations' in input_conv_type:
if i < num_prime_notes and cc == 0:
song.append(song_chunk[i][2])
else:
# Durations
x = torch.LongTensor(song).cuda()
y = 0
while not 384 < y < 640:
with ctx:
out = model.generate(x,
1,
temperature=dur_temperature,
filter_logits_fn=top_k,
filter_kwargs={'k': dur_top_k},
return_prime=False,
verbose=False)
y = out.tolist()[0][0]
song.append(y)
else:
song.append(song_chunk[i][2])
#========================================================================
if 'Velocities' in input_conv_type:
if i < num_prime_notes and cc == 0:
song.append(song_chunk[i][3])
else:
# Velocities
x = torch.LongTensor(song).cuda()
y = 0
while not 640 < y < 768:
with ctx:
out = model.generate(x,
1,
temperature=vel_temperature,
return_prime=False,
verbose=False)
y = out.tolist()[0][0]
song.append(y)
else:
song.append(song_chunk[i][3])
#========================================================================
if cc == 0:
final_song.extend(song[602:][:(song_chunk_len * 4)])
else:
final_song.extend(song[602:][600:(song_chunk_len * 4)])
psrc = copy.deepcopy(song[1:301])
ptrg = copy.deepcopy(song[602:][:600])
#========================================================================
if len(final_song) >= input_number_conv_notes * 4:
break
#========================================================================
print('=' * 70)
print('Done!')
print('=' * 70)
#===============================================================================
print('Rendering results...')
print('=' * 70)
print('Sample INTs', final_song[:15])
print('=' * 70)
song_f = []
if len(final_song) != 0:
time = 0
dur = 0
vel = 90
pitch = 60
channel = 0
patch = 0
patches = [0] * 16
for ss in final_song:
if 0 <= ss < 256:
time += ss * 16
if 256 <= ss < 384:
pitch = ss-256
if 384 <= ss < 640:
dur = (ss-384) * 16
if 640 <= ss < 768:
vel = (ss-640)
song_f.append(['note', time, dur, channel, pitch, vel, patch])
fn1 = "Score-2-Performance-Transformer-Composition"
detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f,
output_signature = 'Score 2 Performance Transformer',
output_file_name = fn1,
track_name='Project Los Angeles',
list_of_MIDI_patches=patches
)
new_fn = fn1+'.mid'
audio = midi_to_colab_audio(new_fn,
soundfont_path=soundfont,
sample_rate=16000,
volume_scale=10,
output_for_gradio=True
)
print('Done!')
print('=' * 70)
#========================================================
output_midi_title = str(fn1)
output_midi_summary = str(song_f[:3])
output_midi = str(new_fn)
output_audio = (16000, audio)
output_plot = TMIDIX.plot_ms_SONG(song_f, plot_title=output_midi, return_plt=True)
print('Output MIDI file name:', output_midi)
print('Output MIDI title:', output_midi_title)
print('Output MIDI summary:', output_midi_summary)
print('=' * 70)
#========================================================
print('-' * 70)
print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('-' * 70)
print('Req execution time:', (reqtime.time() - start_time), 'sec')
return output_midi_title, output_midi_summary, output_midi, output_audio, output_plot
# =================================================================================================
if __name__ == "__main__":
PDT = timezone('US/Pacific')
print('=' * 70)
print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('=' * 70)
soundfont = "SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2"
app = gr.Blocks()
with app:
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Score 2 Performance Transformer</h1>")
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Convert any MIDI score to a nice performance</h1>")
gr.Markdown("## Upload your MIDI or select a sample example MIDI below")
input_midi = gr.File(label="Input MIDI", file_types=[".midi", ".mid", ".kar"])
gr.Markdown("## Select MIDI type")
input_midi_type = gr.Radio(["Score", "Performance", "Custom"],
value="Score",
label="Input MIDI type",
info="Select 'Custom' option to enable model top_k and temperature settings below"
)
gr.Markdown("## Select conversion type")
input_conv_type = gr.Radio(["Durations and Velocities", "Durations", "Velocities"],
value="Durations and Velocities",
label="Conversion type"
)
gr.Markdown("## Conversion options")
input_number_prime_notes = gr.Slider(0, 512, value=0, step=8, label="Number of prime notes")
input_number_conv_notes = gr.Slider(8, 2048, value=512, step=8, label="Number of notes to convert")
gr.Markdown("## Custom MIDI type model options")
input_model_dur_top_k = gr.Slider(1, 100, value=1, step=1, label="Model sampling top k value for durations")
input_model_dur_temperature = gr.Slider(0.5, 1.5, value=1.1, step=0.05, label="Model temperature for durations")
input_model_vel_temperature = gr.Slider(0.5, 1.5, value=1.5, step=0.05, label="Model temperature for velocities")
run_btn = gr.Button("convert", variant="primary")
gr.Markdown("## Generation results")
output_midi_title = gr.Textbox(label="Output MIDI title")
output_midi_summary = gr.Textbox(label="Output MIDI summary")
output_audio = gr.Audio(label="Output MIDI audio", format="wav", elem_id="midi_audio")
output_plot = gr.Plot(label="Output MIDI score plot")
output_midi = gr.File(label="Output MIDI file", file_types=[".mid"])
run_event = run_btn.click(Convert_Score_to_Performance, [input_midi,
input_midi_type,
input_conv_type,
input_number_prime_notes,
input_number_conv_notes,
input_model_dur_top_k,
input_model_dur_temperature,
input_model_vel_temperature
],
[output_midi_title, output_midi_summary, output_midi, output_audio, output_plot])
gr.Examples(
[["asap_midi_score_21.mid", "Score", "Durations and Velocities", 8, 600, 1, 1.1, 1.5],
["asap_midi_score_45.mid", "Score", "Durations and Velocities", 8, 600, 1, 1.1, 1.5],
["asap_midi_score_69.mid", "Score", "Durations and Velocities", 8, 600, 1, 1.1, 1.5],
["asap_midi_score_118.mid", "Score", "Durations and Velocities", 8, 600, 1, 1.1, 1.5],
["asap_midi_score_167.mid", "Score", "Durations and Velocities", 8, 600, 1, 1.1, 1.5],
],
[input_midi,
input_midi_type,
input_conv_type,
input_number_prime_notes,
input_number_conv_notes,
input_model_dur_top_k,
input_model_dur_temperature,
input_model_vel_temperature
],
[output_midi_title, output_midi_summary, output_midi, output_audio, output_plot],
Convert_Score_to_Performance
)
app.queue().launch() |