Update app.py
Browse files
app.py
CHANGED
@@ -120,32 +120,32 @@ def load_midi(midi_file):
|
|
120 |
print('=' * 70)
|
121 |
|
122 |
src_melody_chords_f = []
|
123 |
-
melody_chords_f = []
|
124 |
|
125 |
-
for i in range(0, len(melody_chords),
|
126 |
|
127 |
chunk = melody_chords[i:i+300]
|
128 |
|
129 |
src = []
|
130 |
-
src1 = []
|
131 |
-
trg = []
|
132 |
|
133 |
-
|
|
|
134 |
|
135 |
-
|
136 |
-
src.extend([mm[0], mm[2]+256])
|
137 |
-
src1.append([mm[0], mm[2]+256, mm[1]+384, mm[3]+640])
|
138 |
-
trg.extend([mm[0], mm[2]+256, mm[1]+384, mm[3]+640])
|
139 |
|
140 |
-
|
141 |
-
|
|
|
|
|
|
|
|
|
|
|
142 |
|
143 |
print('Done!')
|
144 |
print('=' * 70)
|
145 |
-
print('Number of composition chunks:', len(
|
146 |
print('=' * 70)
|
147 |
|
148 |
-
return
|
149 |
|
150 |
# =================================================================================================
|
151 |
|
@@ -198,9 +198,7 @@ def Convert_Score_to_Performance(input_midi,
|
|
198 |
model.eval()
|
199 |
|
200 |
#==================================================================
|
201 |
-
|
202 |
-
composition_chunk_idx = 0 # Composition chunk idx to generate durations and velocities for. Each chunk is 300 notes
|
203 |
-
|
204 |
num_prime_notes = input_number_prime_notes # Priming improves the results but it is not necessary and you can set it to zero
|
205 |
dur_top_k = input_model_dur_top_k # Use k == 1 if src composition is score and k > 1 if src composition is performance
|
206 |
|
@@ -209,73 +207,145 @@ def Convert_Score_to_Performance(input_midi,
|
|
209 |
|
210 |
#==================================================================
|
211 |
|
212 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
213 |
|
214 |
-
|
|
|
|
|
|
|
|
|
|
|
215 |
|
216 |
-
|
217 |
-
song.extend(m[:2])
|
218 |
|
219 |
-
|
220 |
|
221 |
-
|
|
|
|
|
222 |
|
223 |
-
|
224 |
|
225 |
-
|
226 |
|
227 |
-
if
|
228 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
229 |
|
230 |
else:
|
|
|
|
|
|
|
|
|
231 |
|
232 |
-
|
233 |
|
234 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
235 |
|
236 |
-
|
|
|
|
|
|
|
|
|
|
|
237 |
|
238 |
-
|
239 |
-
out = model.generate(x,
|
240 |
-
1,
|
241 |
-
temperature=dur_temperature,
|
242 |
-
filter_logits_fn=top_k,
|
243 |
-
filter_kwargs={'k': dur_top_k},
|
244 |
-
return_prime=False,
|
245 |
-
verbose=False)
|
246 |
|
247 |
-
|
248 |
-
|
249 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
250 |
|
|
|
251 |
|
252 |
-
|
253 |
|
254 |
-
|
255 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
256 |
|
257 |
else:
|
|
|
258 |
|
259 |
-
|
260 |
-
|
261 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
262 |
|
263 |
-
while not 640 < y < 768:
|
264 |
-
|
265 |
-
with ctx:
|
266 |
-
out = model.generate(x,
|
267 |
-
1,
|
268 |
-
temperature=vel_temperature,
|
269 |
-
#filter_logits_fn=top_k,
|
270 |
-
#filter_kwargs={'k': 10},
|
271 |
-
return_prime=False,
|
272 |
-
verbose=False)
|
273 |
-
|
274 |
-
y = out.tolist()[0][0]
|
275 |
-
|
276 |
-
song.append(y)
|
277 |
-
|
278 |
-
|
279 |
print('=' * 70)
|
280 |
print('Done!')
|
281 |
print('=' * 70)
|
|
|
120 |
print('=' * 70)
|
121 |
|
122 |
src_melody_chords_f = []
|
|
|
123 |
|
124 |
+
for i in range(0, len(melody_chords), 150):
|
125 |
|
126 |
chunk = melody_chords[i:i+300]
|
127 |
|
128 |
src = []
|
|
|
|
|
129 |
|
130 |
+
for mm in chunk:
|
131 |
+
src.append([mm[0], mm[2]+256, mm[1]+384, mm[3]+640])
|
132 |
|
133 |
+
clen = len(src)
|
|
|
|
|
|
|
134 |
|
135 |
+
if clen < 300:
|
136 |
+
|
137 |
+
chunk_mult = (300 // clen) + 1
|
138 |
+
|
139 |
+
src += src * chunk_mult
|
140 |
+
|
141 |
+
src_melody_chords_f.append([clen, src[:300]])
|
142 |
|
143 |
print('Done!')
|
144 |
print('=' * 70)
|
145 |
+
print('Number of composition chunks:', len(src_melody_chords_f))
|
146 |
print('=' * 70)
|
147 |
|
148 |
+
return src_melody_chords_f
|
149 |
|
150 |
# =================================================================================================
|
151 |
|
|
|
198 |
model.eval()
|
199 |
|
200 |
#==================================================================
|
201 |
+
|
|
|
|
|
202 |
num_prime_notes = input_number_prime_notes # Priming improves the results but it is not necessary and you can set it to zero
|
203 |
dur_top_k = input_model_dur_top_k # Use k == 1 if src composition is score and k > 1 if src composition is performance
|
204 |
|
|
|
207 |
|
208 |
#==================================================================
|
209 |
|
210 |
+
if input_midi_type == 'Score':
|
211 |
+
|
212 |
+
dur_top_k = 1
|
213 |
+
dur_temperature = 1.1
|
214 |
+
vel_temperature = 1.5
|
215 |
+
|
216 |
+
elif input_midi_type == 'Performance':
|
217 |
+
|
218 |
+
dur_top_k = 10
|
219 |
+
dur_temperature = 1.5
|
220 |
+
vel_temperature = 1.5
|
221 |
|
222 |
+
else:
|
223 |
+
|
224 |
+
dur_top_k = input_model_dur_top_k # Use k == 1 if src composition is score and k > 1 if src composition is performance
|
225 |
+
|
226 |
+
dur_temperature = input_model_dur_temperature # For best results, durations temperature should be more than 1.0 but less than velocities temperature
|
227 |
+
vel_temperature = input_model_vel_temperature
|
228 |
|
229 |
+
final_song = []
|
|
|
230 |
|
231 |
+
for cc, (song_chunk_len, song_chunk) in enumerate(src_melody_chords_f):
|
232 |
|
233 |
+
print('=' * 70)
|
234 |
+
print('Rendering song chunk #', cc)
|
235 |
+
print('=' * 70)
|
236 |
|
237 |
+
#========================================================================
|
238 |
|
239 |
+
song = [768]
|
240 |
|
241 |
+
if cc == 0:
|
242 |
+
|
243 |
+
for m in song_chunk:
|
244 |
+
song.extend(m[:2])
|
245 |
+
|
246 |
+
song.append(769)
|
247 |
+
|
248 |
+
sidx = 0
|
249 |
+
eidx = 300
|
250 |
|
251 |
else:
|
252 |
+
for m in song_chunk[:150]:
|
253 |
+
psrc.extend(m[:2])
|
254 |
+
|
255 |
+
psrc.append(769)
|
256 |
|
257 |
+
song = copy.deepcopy(psrc + ptrg)
|
258 |
|
259 |
+
sidx = 150
|
260 |
+
eidx = 300
|
261 |
+
|
262 |
+
#========================================================================
|
263 |
+
|
264 |
+
for i in tqdm.tqdm(range(sidx, eidx)):
|
265 |
+
|
266 |
+
song.extend(song_chunk[i][:2])
|
267 |
|
268 |
+
if 'Durations' in input_conv_type:
|
269 |
+
|
270 |
+
if i < num_prime_notes and cc == 0:
|
271 |
+
song.append(song_chunk[i][2])
|
272 |
+
|
273 |
+
else:
|
274 |
|
275 |
+
# Durations
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
276 |
|
277 |
+
x = torch.LongTensor(song).cuda()
|
278 |
+
|
279 |
+
y = 0
|
280 |
+
|
281 |
+
while not 384 < y < 640:
|
282 |
+
|
283 |
+
with ctx:
|
284 |
+
out = model.generate(x,
|
285 |
+
1,
|
286 |
+
temperature=dur_temperature,
|
287 |
+
filter_logits_fn=top_k,
|
288 |
+
filter_kwargs={'k': dur_top_k},
|
289 |
+
return_prime=False,
|
290 |
+
verbose=False)
|
291 |
+
|
292 |
+
y = out.tolist()[0][0]
|
293 |
+
|
294 |
+
song.append(y)
|
295 |
+
|
296 |
+
else:
|
297 |
+
song.append(song_chunk[i][2])
|
298 |
|
299 |
+
#========================================================================
|
300 |
|
301 |
+
if 'Velocities' in input_conv_type:
|
302 |
|
303 |
+
|
304 |
+
if i < num_prime_notes and cc == 0:
|
305 |
+
song.append(song_chunk[i][3])
|
306 |
+
|
307 |
+
else:
|
308 |
+
|
309 |
+
# Velocities
|
310 |
+
|
311 |
+
x = torch.LongTensor(song).cuda()
|
312 |
+
|
313 |
+
y = 0
|
314 |
+
|
315 |
+
while not 640 < y < 768:
|
316 |
+
|
317 |
+
with ctx:
|
318 |
+
out = model.generate(x,
|
319 |
+
1,
|
320 |
+
temperature=vel_temperature,
|
321 |
+
return_prime=False,
|
322 |
+
verbose=False)
|
323 |
+
|
324 |
+
y = out.tolist()[0][0]
|
325 |
+
|
326 |
+
song.append(y)
|
327 |
+
|
328 |
+
else:
|
329 |
+
song.append(song_chunk[i][3])
|
330 |
+
|
331 |
+
#========================================================================
|
332 |
+
|
333 |
+
if cc == 0:
|
334 |
+
final_song.extend(song[602:][:(song_chunk_len * 4)])
|
335 |
|
336 |
else:
|
337 |
+
final_song.extend(song[602:][600:(song_chunk_len * 4)])
|
338 |
|
339 |
+
psrc = copy.deepcopy(song[1:301])
|
340 |
+
ptrg = copy.deepcopy(song[602:][:600])
|
341 |
+
|
342 |
+
#========================================================================
|
343 |
+
|
344 |
+
if len(final_song) >= input_number_conv_notes * 4:
|
345 |
+
break
|
346 |
+
|
347 |
+
#========================================================================
|
348 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
349 |
print('=' * 70)
|
350 |
print('Done!')
|
351 |
print('=' * 70)
|