Update app.py
Browse files
app.py
CHANGED
|
@@ -184,7 +184,7 @@ def Convert_Score_to_Performance(input_midi,
|
|
| 184 |
|
| 185 |
#==================================================================
|
| 186 |
|
| 187 |
-
|
| 188 |
|
| 189 |
#==================================================================
|
| 190 |
|
|
@@ -196,106 +196,83 @@ def Convert_Score_to_Performance(input_midi,
|
|
| 196 |
model.eval()
|
| 197 |
|
| 198 |
#==================================================================
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
filter_kwargs={'thres': input_model_top_p},
|
| 209 |
-
temperature=input_model_temperature,
|
| 210 |
-
return_prime=True,
|
| 211 |
-
verbose=True)
|
| 212 |
-
|
| 213 |
-
y = out.tolist()[0]
|
| 214 |
-
|
| 215 |
-
return y
|
| 216 |
-
|
| 217 |
#==================================================================
|
| 218 |
-
|
| 219 |
-
def generate_tokens(seq, max_num_ptcs=5, max_tries=10):
|
| 220 |
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
pcount = 0
|
| 224 |
-
y = 545
|
| 225 |
-
tries = 0
|
| 226 |
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
seen = False
|
| 230 |
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
|
|
|
|
|
|
| 235 |
|
| 236 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 237 |
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 245 |
|
| 246 |
-
y =
|
| 247 |
|
| 248 |
-
|
| 249 |
-
if not seen:
|
| 250 |
-
input.append(y)
|
| 251 |
-
gen_tokens.append(y)
|
| 252 |
-
seen = True
|
| 253 |
-
|
| 254 |
-
else:
|
| 255 |
-
tries += 1
|
| 256 |
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
#==================================================================
|
| 269 |
-
|
| 270 |
-
song = []
|
| 271 |
-
|
| 272 |
-
if input_gen_type == 'Freestyle':
|
| 273 |
|
| 274 |
-
|
| 275 |
-
song.extend(output)
|
| 276 |
|
| 277 |
-
else:
|
| 278 |
-
|
| 279 |
-
for i in range(input_number_prime_chords):
|
| 280 |
-
song.extend(prime_toks[i])
|
| 281 |
-
|
| 282 |
-
for i in tqdm.tqdm(range(input_number_prime_chords, input_number_prime_chords+input_number_gen_chords)):
|
| 283 |
-
|
| 284 |
-
song.extend(score_toks[i])
|
| 285 |
-
|
| 286 |
-
if control_toks[i]:
|
| 287 |
-
for ct in control_toks[i]:
|
| 288 |
-
|
| 289 |
-
if input_use_original_durations:
|
| 290 |
-
song.append(ct[0])
|
| 291 |
-
|
| 292 |
-
if input_match_original_pitches_counts:
|
| 293 |
-
out_seq = generate_tokens(song, ct[1])
|
| 294 |
-
|
| 295 |
-
else:
|
| 296 |
-
out_seq = generate_tokens(song)
|
| 297 |
-
|
| 298 |
-
song.extend(out_seq)
|
| 299 |
|
| 300 |
print('=' * 70)
|
| 301 |
print('Done!')
|
|
@@ -308,42 +285,39 @@ def Convert_Score_to_Performance(input_midi,
|
|
| 308 |
print('=' * 70)
|
| 309 |
print('Sample INTs', song[:15])
|
| 310 |
print('=' * 70)
|
|
|
|
|
|
|
| 311 |
|
| 312 |
if len(song) != 0:
|
| 313 |
|
| 314 |
-
song_f = []
|
| 315 |
-
|
| 316 |
time = 0
|
| 317 |
-
dur =
|
| 318 |
-
channel = 0
|
| 319 |
-
pitch = 60
|
| 320 |
vel = 90
|
|
|
|
|
|
|
|
|
|
| 321 |
|
| 322 |
-
patches = [0
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 334 |
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
channel = (ss-256) // 32
|
| 339 |
-
|
| 340 |
-
if 544 < ss < 672:
|
| 341 |
-
|
| 342 |
-
patch = channel * 8
|
| 343 |
-
|
| 344 |
-
pitch = ss-544
|
| 345 |
-
|
| 346 |
-
song_f.append(['note', time, dur, channel, pitch, velocities[channel], patch])
|
| 347 |
|
| 348 |
fn1 = "Score-2-Performance-Transformer-Composition"
|
| 349 |
|
|
|
|
| 184 |
|
| 185 |
#==================================================================
|
| 186 |
|
| 187 |
+
melody_chords_f, src_melody_chords_f = load_midi(input_midi)
|
| 188 |
|
| 189 |
#==================================================================
|
| 190 |
|
|
|
|
| 196 |
model.eval()
|
| 197 |
|
| 198 |
#==================================================================
|
| 199 |
+
|
| 200 |
+
composition_chunk_idx = 0 # Composition chunk idx to generate durations and velocities for. Each chunk is 300 notes
|
| 201 |
+
|
| 202 |
+
num_prime_notes = input_number_prime_notes # Priming improves the results but it is not necessary and you can set it to zero
|
| 203 |
+
dur_top_k = input_model_dur_top_k # Use k == 1 if src composition is score and k > 1 if src composition is performance
|
| 204 |
+
|
| 205 |
+
dur_temperature = input_model_dur_temperature # For best results, durations temperature should be more than 1.0 but less than velocities temperature
|
| 206 |
+
vel_temperature = input_model_vel_temperature # For best results, velocities temperature must be larger than 1.3 and larger than durations temperature
|
| 207 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 208 |
#==================================================================
|
|
|
|
|
|
|
| 209 |
|
| 210 |
+
song_chunk = src_melody_chords_f[composition_chunk_idx]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 211 |
|
| 212 |
+
song = [768]
|
|
|
|
|
|
|
| 213 |
|
| 214 |
+
for m in song_chunk:
|
| 215 |
+
song.extend(m[:2])
|
| 216 |
+
|
| 217 |
+
song.append(769)
|
| 218 |
+
|
| 219 |
+
for i in tqdm.tqdm(range(len(song_chunk))):
|
| 220 |
|
| 221 |
+
song.extend(song_chunk[i][:2])
|
| 222 |
+
|
| 223 |
+
# Durations
|
| 224 |
+
|
| 225 |
+
if i < num_prime_notes:
|
| 226 |
+
song.append(song_chunk[i][2])
|
| 227 |
+
|
| 228 |
+
else:
|
| 229 |
+
|
| 230 |
+
x = torch.LongTensor(song).cuda()
|
| 231 |
+
|
| 232 |
+
y = 0
|
| 233 |
+
|
| 234 |
+
while not 384 < y < 640:
|
| 235 |
+
|
| 236 |
+
with ctx:
|
| 237 |
+
out = model.generate(x,
|
| 238 |
+
1,
|
| 239 |
+
temperature=dur_temperature,
|
| 240 |
+
filter_logits_fn=top_k,
|
| 241 |
+
filter_kwargs={'k': dur_top_k},
|
| 242 |
+
return_prime=False,
|
| 243 |
+
verbose=False)
|
| 244 |
+
|
| 245 |
+
y = out.tolist()[0][0]
|
| 246 |
|
| 247 |
+
song.append(y)
|
| 248 |
+
|
| 249 |
+
|
| 250 |
+
# Velocities
|
| 251 |
+
|
| 252 |
+
if i < num_prime_notes:
|
| 253 |
+
song.append(song_chunk[i][3])
|
| 254 |
+
|
| 255 |
+
else:
|
| 256 |
+
|
| 257 |
+
x = torch.LongTensor(song).cuda()
|
| 258 |
|
| 259 |
+
y = 0
|
| 260 |
|
| 261 |
+
while not 640 < y < 768:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 262 |
|
| 263 |
+
with ctx:
|
| 264 |
+
out = model.generate(x,
|
| 265 |
+
1,
|
| 266 |
+
temperature=vel_temperature,
|
| 267 |
+
#filter_logits_fn=top_k,
|
| 268 |
+
#filter_kwargs={'k': 10},
|
| 269 |
+
return_prime=False,
|
| 270 |
+
verbose=False)
|
| 271 |
|
| 272 |
+
y = out.tolist()[0][0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 273 |
|
| 274 |
+
song.append(y)
|
|
|
|
| 275 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 276 |
|
| 277 |
print('=' * 70)
|
| 278 |
print('Done!')
|
|
|
|
| 285 |
print('=' * 70)
|
| 286 |
print('Sample INTs', song[:15])
|
| 287 |
print('=' * 70)
|
| 288 |
+
|
| 289 |
+
song_f = []
|
| 290 |
|
| 291 |
if len(song) != 0:
|
| 292 |
|
|
|
|
|
|
|
| 293 |
time = 0
|
| 294 |
+
dur = 0
|
|
|
|
|
|
|
| 295 |
vel = 90
|
| 296 |
+
pitch = 60
|
| 297 |
+
channel = 0
|
| 298 |
+
patch = 0
|
| 299 |
|
| 300 |
+
patches = [0] * 16
|
| 301 |
+
|
| 302 |
+
for ss in song1:
|
| 303 |
+
|
| 304 |
+
if 0 <= ss < 256:
|
| 305 |
+
|
| 306 |
+
time += ss * 16
|
| 307 |
+
|
| 308 |
+
if 256 <= ss < 384:
|
| 309 |
+
|
| 310 |
+
pitch = ss-256
|
| 311 |
+
|
| 312 |
+
if 384 <= ss < 640:
|
| 313 |
+
|
| 314 |
+
dur = (ss-384) * 16
|
| 315 |
+
|
| 316 |
+
if 640 <= ss < 768:
|
| 317 |
|
| 318 |
+
vel = (ss-640)
|
| 319 |
+
|
| 320 |
+
song_f.append(['note', time, dur, channel, pitch, vel, patch])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 321 |
|
| 322 |
fn1 = "Score-2-Performance-Transformer-Composition"
|
| 323 |
|