Update app.py
Browse files
app.py
CHANGED
@@ -184,7 +184,7 @@ def Convert_Score_to_Performance(input_midi,
|
|
184 |
|
185 |
#==================================================================
|
186 |
|
187 |
-
|
188 |
|
189 |
#==================================================================
|
190 |
|
@@ -196,106 +196,83 @@ def Convert_Score_to_Performance(input_midi,
|
|
196 |
model.eval()
|
197 |
|
198 |
#==================================================================
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
filter_kwargs={'thres': input_model_top_p},
|
209 |
-
temperature=input_model_temperature,
|
210 |
-
return_prime=True,
|
211 |
-
verbose=True)
|
212 |
-
|
213 |
-
y = out.tolist()[0]
|
214 |
-
|
215 |
-
return y
|
216 |
-
|
217 |
#==================================================================
|
218 |
-
|
219 |
-
def generate_tokens(seq, max_num_ptcs=5, max_tries=10):
|
220 |
|
221 |
-
|
222 |
-
|
223 |
-
pcount = 0
|
224 |
-
y = 545
|
225 |
-
tries = 0
|
226 |
|
227 |
-
|
228 |
-
|
229 |
-
seen = False
|
230 |
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
|
|
|
|
235 |
|
236 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
237 |
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
|
|
|
|
|
|
|
|
245 |
|
246 |
-
y =
|
247 |
|
248 |
-
|
249 |
-
if not seen:
|
250 |
-
input.append(y)
|
251 |
-
gen_tokens.append(y)
|
252 |
-
seen = True
|
253 |
-
|
254 |
-
else:
|
255 |
-
tries += 1
|
256 |
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
|
266 |
-
|
267 |
-
|
268 |
-
#==================================================================
|
269 |
-
|
270 |
-
song = []
|
271 |
-
|
272 |
-
if input_gen_type == 'Freestyle':
|
273 |
|
274 |
-
|
275 |
-
song.extend(output)
|
276 |
|
277 |
-
else:
|
278 |
-
|
279 |
-
for i in range(input_number_prime_chords):
|
280 |
-
song.extend(prime_toks[i])
|
281 |
-
|
282 |
-
for i in tqdm.tqdm(range(input_number_prime_chords, input_number_prime_chords+input_number_gen_chords)):
|
283 |
-
|
284 |
-
song.extend(score_toks[i])
|
285 |
-
|
286 |
-
if control_toks[i]:
|
287 |
-
for ct in control_toks[i]:
|
288 |
-
|
289 |
-
if input_use_original_durations:
|
290 |
-
song.append(ct[0])
|
291 |
-
|
292 |
-
if input_match_original_pitches_counts:
|
293 |
-
out_seq = generate_tokens(song, ct[1])
|
294 |
-
|
295 |
-
else:
|
296 |
-
out_seq = generate_tokens(song)
|
297 |
-
|
298 |
-
song.extend(out_seq)
|
299 |
|
300 |
print('=' * 70)
|
301 |
print('Done!')
|
@@ -308,42 +285,39 @@ def Convert_Score_to_Performance(input_midi,
|
|
308 |
print('=' * 70)
|
309 |
print('Sample INTs', song[:15])
|
310 |
print('=' * 70)
|
|
|
|
|
311 |
|
312 |
if len(song) != 0:
|
313 |
|
314 |
-
song_f = []
|
315 |
-
|
316 |
time = 0
|
317 |
-
dur =
|
318 |
-
channel = 0
|
319 |
-
pitch = 60
|
320 |
vel = 90
|
|
|
|
|
|
|
321 |
|
322 |
-
patches = [0
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
|
|
|
|
|
|
|
|
|
|
334 |
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
channel = (ss-256) // 32
|
339 |
-
|
340 |
-
if 544 < ss < 672:
|
341 |
-
|
342 |
-
patch = channel * 8
|
343 |
-
|
344 |
-
pitch = ss-544
|
345 |
-
|
346 |
-
song_f.append(['note', time, dur, channel, pitch, velocities[channel], patch])
|
347 |
|
348 |
fn1 = "Score-2-Performance-Transformer-Composition"
|
349 |
|
|
|
184 |
|
185 |
#==================================================================
|
186 |
|
187 |
+
melody_chords_f, src_melody_chords_f = load_midi(input_midi)
|
188 |
|
189 |
#==================================================================
|
190 |
|
|
|
196 |
model.eval()
|
197 |
|
198 |
#==================================================================
|
199 |
+
|
200 |
+
composition_chunk_idx = 0 # Composition chunk idx to generate durations and velocities for. Each chunk is 300 notes
|
201 |
+
|
202 |
+
num_prime_notes = input_number_prime_notes # Priming improves the results but it is not necessary and you can set it to zero
|
203 |
+
dur_top_k = input_model_dur_top_k # Use k == 1 if src composition is score and k > 1 if src composition is performance
|
204 |
+
|
205 |
+
dur_temperature = input_model_dur_temperature # For best results, durations temperature should be more than 1.0 but less than velocities temperature
|
206 |
+
vel_temperature = input_model_vel_temperature # For best results, velocities temperature must be larger than 1.3 and larger than durations temperature
|
207 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
208 |
#==================================================================
|
|
|
|
|
209 |
|
210 |
+
song_chunk = src_melody_chords_f[composition_chunk_idx]
|
|
|
|
|
|
|
|
|
211 |
|
212 |
+
song = [768]
|
|
|
|
|
213 |
|
214 |
+
for m in song_chunk:
|
215 |
+
song.extend(m[:2])
|
216 |
+
|
217 |
+
song.append(769)
|
218 |
+
|
219 |
+
for i in tqdm.tqdm(range(len(song_chunk))):
|
220 |
|
221 |
+
song.extend(song_chunk[i][:2])
|
222 |
+
|
223 |
+
# Durations
|
224 |
+
|
225 |
+
if i < num_prime_notes:
|
226 |
+
song.append(song_chunk[i][2])
|
227 |
+
|
228 |
+
else:
|
229 |
+
|
230 |
+
x = torch.LongTensor(song).cuda()
|
231 |
+
|
232 |
+
y = 0
|
233 |
+
|
234 |
+
while not 384 < y < 640:
|
235 |
+
|
236 |
+
with ctx:
|
237 |
+
out = model.generate(x,
|
238 |
+
1,
|
239 |
+
temperature=dur_temperature,
|
240 |
+
filter_logits_fn=top_k,
|
241 |
+
filter_kwargs={'k': dur_top_k},
|
242 |
+
return_prime=False,
|
243 |
+
verbose=False)
|
244 |
+
|
245 |
+
y = out.tolist()[0][0]
|
246 |
|
247 |
+
song.append(y)
|
248 |
+
|
249 |
+
|
250 |
+
# Velocities
|
251 |
+
|
252 |
+
if i < num_prime_notes:
|
253 |
+
song.append(song_chunk[i][3])
|
254 |
+
|
255 |
+
else:
|
256 |
+
|
257 |
+
x = torch.LongTensor(song).cuda()
|
258 |
|
259 |
+
y = 0
|
260 |
|
261 |
+
while not 640 < y < 768:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
262 |
|
263 |
+
with ctx:
|
264 |
+
out = model.generate(x,
|
265 |
+
1,
|
266 |
+
temperature=vel_temperature,
|
267 |
+
#filter_logits_fn=top_k,
|
268 |
+
#filter_kwargs={'k': 10},
|
269 |
+
return_prime=False,
|
270 |
+
verbose=False)
|
271 |
|
272 |
+
y = out.tolist()[0][0]
|
|
|
|
|
|
|
|
|
|
|
|
|
273 |
|
274 |
+
song.append(y)
|
|
|
275 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
276 |
|
277 |
print('=' * 70)
|
278 |
print('Done!')
|
|
|
285 |
print('=' * 70)
|
286 |
print('Sample INTs', song[:15])
|
287 |
print('=' * 70)
|
288 |
+
|
289 |
+
song_f = []
|
290 |
|
291 |
if len(song) != 0:
|
292 |
|
|
|
|
|
293 |
time = 0
|
294 |
+
dur = 0
|
|
|
|
|
295 |
vel = 90
|
296 |
+
pitch = 60
|
297 |
+
channel = 0
|
298 |
+
patch = 0
|
299 |
|
300 |
+
patches = [0] * 16
|
301 |
+
|
302 |
+
for ss in song1:
|
303 |
+
|
304 |
+
if 0 <= ss < 256:
|
305 |
+
|
306 |
+
time += ss * 16
|
307 |
+
|
308 |
+
if 256 <= ss < 384:
|
309 |
+
|
310 |
+
pitch = ss-256
|
311 |
+
|
312 |
+
if 384 <= ss < 640:
|
313 |
+
|
314 |
+
dur = (ss-384) * 16
|
315 |
+
|
316 |
+
if 640 <= ss < 768:
|
317 |
|
318 |
+
vel = (ss-640)
|
319 |
+
|
320 |
+
song_f.append(['note', time, dur, channel, pitch, vel, patch])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
321 |
|
322 |
fn1 = "Score-2-Performance-Transformer-Composition"
|
323 |
|