Spaces:
Sleeping
Sleeping
import pandas as pd | |
import streamlit as st | |
import seaborn as sns | |
from data_cleaning import preprocess | |
from transformers import pipeline | |
from data_integration import scrape_all_pages | |
sentiment_model = pipeline(model="ashok2216/gpt2-amazon-sentiment-classifier") | |
# Example usage:- | |
sample_url = 'https://www.amazon.in/OnePlus-Nord-Pastel-128GB-Storage/product-reviews/B0BY8JZ22K/ref=cm_cr_dp_d_show_all_btm?ie=UTF8&reviewerType=all_reviews' | |
url = st.text_input("Amazon product link", sample_url) | |
st.write("The current movie title is", url) | |
all_reviews = scrape_all_pages(url) | |
# Convert to DataFrame for further analysis | |
reviews = pd.DataFrame(all_reviews) | |
processed_text = reviews[content] | |
# st.markdown(sentiment_model(['It is Super!'])) | |
sentiments = [] | |
for text in processed_text: | |
if list(sentiment_model(text)[0].values())[0] == 'LABEL_1': | |
output = 'Positive' | |
else: | |
output = 'Negative' | |
sentiments.append(output) | |
df['sentiments'] = sentiments | |
sns.countplot(df['sentiments']) | |