import pandas as pd import streamlit as st import seaborn as sns from data_cleaning import preprocess from transformers import pipeline from data_integration import scrape_all_pages sentiment_model = pipeline(model="ashok2216/gpt2-amazon-sentiment-classifier") # Example usage:- sample_url = 'https://www.amazon.in/OnePlus-Nord-Pastel-128GB-Storage/product-reviews/B0BY8JZ22K/ref=cm_cr_dp_d_show_all_btm?ie=UTF8&reviewerType=all_reviews' url = st.text_input("Amazon product link", sample_url) st.write("The current movie title is", url) all_reviews = scrape_all_pages(url) # Convert to DataFrame for further analysis reviews = pd.DataFrame(all_reviews) processed_text = reviews[content] # st.markdown(sentiment_model(['It is Super!'])) sentiments = [] for text in processed_text: if list(sentiment_model(text)[0].values())[0] == 'LABEL_1': output = 'Positive' else: output = 'Negative' sentiments.append(output) df['sentiments'] = sentiments sns.countplot(df['sentiments'])