Spaces:
Sleeping
Sleeping
File size: 1,008 Bytes
2d0356a 7901fc5 94c0eb7 7901fc5 c34d627 7901fc5 7886342 7901fc5 2bb3a11 94c0eb7 7901fc5 94c0eb7 7901fc5 94c0eb7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 |
import pandas as pd
import streamlit as st
import seaborn as sns
from data_cleaning import preprocess
from transformers import pipeline
from data_integration import scrape_all_pages
sentiment_model = pipeline(model="ashok2216/gpt2-amazon-sentiment-classifier")
# Example usage:-
sample_url = 'https://www.amazon.in/OnePlus-Nord-Pastel-128GB-Storage/product-reviews/B0BY8JZ22K/ref=cm_cr_dp_d_show_all_btm?ie=UTF8&reviewerType=all_reviews'
url = st.text_input("Amazon product link", sample_url)
st.write("The current movie title is", url)
all_reviews = scrape_all_pages(url)
# Convert to DataFrame for further analysis
reviews = pd.DataFrame(all_reviews)
processed_text = reviews[content]
# st.markdown(sentiment_model(['It is Super!']))
sentiments = []
for text in processed_text:
if list(sentiment_model(text)[0].values())[0] == 'LABEL_1':
output = 'Positive'
else:
output = 'Negative'
sentiments.append(output)
df['sentiments'] = sentiments
sns.countplot(df['sentiments'])
|