File size: 2,194 Bytes
83caf2e
2d0356a
7901fc5
 
94c0eb7
7901fc5
c34d627
7901fc5
83caf2e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
648492d
665760e
 
22d2c5b
7901fc5
4f574b7
2bb3a11
ed041a7
94c0eb7
ffea153
0a568e5
94c0eb7
 
 
02e7577
7901fc5
4f574b7
94c0eb7
 
 
02e7577
94c0eb7
 
 
 
 
 
6ca2c27
befb2f1
8e21ec3
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import base64
import pandas as pd
import streamlit as st
import seaborn as sns
from data_cleaning import preprocess
from transformers import pipeline
from data_integration import scrape_all_pages

@st.cache_data
def get_img_as_base64(file):
    with open(file, "rb") as f:
        data = f.read()
    return base64.b64encode(data).decode()


img = get_img_as_base64("image.jpg")

page_bg_img = f"""
<style>
[data-testid="stAppViewContainer"] > .main {{
background-image: url("https://images.unsplash.com/photo-1501426026826-31c667bdf23d");
background-size: 180%;
background-position: top left;
background-repeat: no-repeat;
background-attachment: local;
}}

[data-testid="stSidebar"] > div:first-child {{
background-image: url("data:image/png;base64,{img}");
background-position: center; 
background-repeat: no-repeat;
background-attachment: fixed;
}}

[data-testid="stHeader"] {{
background: rgba(0,0,0,0);
}}

[data-testid="stToolbar"] {{
right: 2rem;
}}
</style>
"""

# st.image("logo.png", width=200, height=200)
st.image("logo.png", width=100)
st.subheader(':blue[NLP HUB®]')
st.header('Amazon Sentiment Analysis using FineTuned :green[GPT-2] Pre-Trained Model')

sentiment_model = pipeline(model="ashok2216/gpt2-amazon-sentiment-classifier")
# Example usage:-
sample_url = 'https://www.amazon.in/Dell-Inspiron-i7-1255U-Processor-Platinum/product-reviews/B0C9F142V6/ref=cm_cr_dp_d_show_all_btm?ie=UTF8&reviewerType=all_reviews'
url = st.text_input("Amazon product link", sample_url)
st.write("Done")
st.subheader('', divider='rainbow')
all_reviews = scrape_all_pages(url)
# Convert to DataFrame for further analysis
reviews = pd.DataFrame(all_reviews)
reviews['processed_text'] = reviews['content'].apply(preprocess)

# st.dataframe(reviews, use_container_width=True)
# st.markdown(sentiment_model(['It is Super!']))

sentiments = []
for text in reviews['processed_text']:
    if list(sentiment_model(text)[0].values())[0] == 'LABEL_1':
        output = 'Positive'
    else:
        output = 'Negative'
    sentiments.append(output)

reviews['sentiments'] = sentiments
st.markdown(':rainbow[Output]')
st.dataframe(reviews, use_container_width=True)
# sns.countplot(reviews['sentiments'])