File size: 6,138 Bytes
695d63f 2d0356a 7901fc5 94c0eb7 7901fc5 c34d627 7901fc5 f1275c9 83caf2e fd1ddbe 5c4d554 83caf2e 0cc3e88 49d79f3 0dc7882 49d79f3 0dc7882 49d79f3 0dc7882 49d79f3 0dc7882 49d79f3 0dc7882 0cc3e88 83caf2e 6f6882a 648492d 2984bac f37ced0 08ea8eb 2984bac 847cbae 7901fc5 4f574b7 2bb3a11 ed041a7 94c0eb7 f37ced0 ffea153 0a568e5 7901fc5 f37ced0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
import pybase64 as base64
import pandas as pd
import streamlit as st
import seaborn as sns
from data_cleaning import preprocess
from transformers import pipeline
from data_integration import scrape_all_pages
#@st.cache_data
#def get_img_as_base64(file):
# with open(file, "rb") as f:
# data = f.read()
# return base64.b64encode(data).decode()
#img = get_img_as_base64("image.jpg")background-image: url("data:image/png;base64,{img}");
page_bg_img = f"""
<style>{
html, body {
font-family: 'Dongle', sans-serif;
margin: 0;
padding: 0;
}
.text-container {
z-index: 100;
width: 100vw;
height: 100vh;
display: flex;
position: absolute;
top: 0;
left: 0;
justify-content: center;
align-items: center;
font-size: 96px;
color: white;
opacity: 0.8;
user-select: none;
text-shadow: 1px 1px rgba(0,0,0,0.1);
}
:root {
--color-bg1: rgb(108, 0, 162);
--color-bg2: rgb(0, 17, 82);
--color1: 18, 113, 255;
--color2: 221, 74, 255;
--color3: 100, 220, 255;
--color4: 200, 50, 50;
--color5: 180, 180, 50;
--color-interactive: 140, 100, 255;
--circle-size: 80%;
--blending: hard-light;
}
@keyframes moveInCircle {
0% {
transform: rotate(0deg);
}
50% {
transform: rotate(180deg);
}
100% {
transform: rotate(360deg);
}
}
@keyframes moveVertical {
0% {
transform: translateY(-50%);
}
50% {
transform: translateY(50%);
}
100% {
transform: translateY(-50%);
}
}
@keyframes moveHorizontal {
0% {
transform: translateX(-50%) translateY(-10%);
}
50% {
transform: translateX(50%) translateY(10%);
}
100% {
transform: translateX(-50%) translateY(-10%);
}
}
.gradient-bg {
width: 100vw;
height: 100vh;
position: relative;
overflow: hidden;
background: linear-gradient(40deg, var(--color-bg1), var(--color-bg2));
top: 0;
left: 0;
svg {
display: none;
}
.gradients-container {
filter: url(#goo) blur(40px) ;
width: 100%;
height: 100%;
}
.g1 {
position: absolute;
background: radial-gradient(circle at center, rgba(var(--color1), 0.8) 0, rgba(var(--color1), 0) 50%) no-repeat;
mix-blend-mode: var(--blending);
width: var(--circle-size);
height: var(--circle-size);
top: calc(50% - var(--circle-size) / 2);
left: calc(50% - var(--circle-size) / 2);
transform-origin: center center;
animation: moveVertical 30s ease infinite;
opacity: 1;
}
.g2 {
position: absolute;
background: radial-gradient(circle at center, rgba(var(--color2), 0.8) 0, rgba(var(--color2), 0) 50%) no-repeat;
mix-blend-mode: var(--blending);
width: var(--circle-size);
height: var(--circle-size);
top: calc(50% - var(--circle-size) / 2);
left: calc(50% - var(--circle-size) / 2);
transform-origin: calc(50% - 400px);
animation: moveInCircle 20s reverse infinite;
opacity: 1;
}
.g3 {
position: absolute;
background: radial-gradient(circle at center, rgba(var(--color3), 0.8) 0, rgba(var(--color3), 0) 50%) no-repeat;
mix-blend-mode: var(--blending);
width: var(--circle-size);
height: var(--circle-size);
top: calc(50% - var(--circle-size) / 2 + 200px);
left: calc(50% - var(--circle-size) / 2 - 500px);
transform-origin: calc(50% + 400px);
animation: moveInCircle 40s linear infinite;
opacity: 1;
}
.g4 {
position: absolute;
background: radial-gradient(circle at center, rgba(var(--color4), 0.8) 0, rgba(var(--color4), 0) 50%) no-repeat;
mix-blend-mode: var(--blending);
width: var(--circle-size);
height: var(--circle-size);
top: calc(50% - var(--circle-size) / 2);
left: calc(50% - var(--circle-size) / 2);
transform-origin: calc(50% - 200px);
animation: moveHorizontal 40s ease infinite;
opacity: 0.7;
}
.g5 {
position: absolute;
background: radial-gradient(circle at center, rgba(var(--color5), 0.8) 0, rgba(var(--color5), 0) 50%) no-repeat;
mix-blend-mode: var(--blending);
width: calc(var(--circle-size) * 2);
height: calc(var(--circle-size) * 2);
top: calc(50% - var(--circle-size));
left: calc(50% - var(--circle-size));
transform-origin: calc(50% - 800px) calc(50% + 200px);
animation: moveInCircle 20s ease infinite;
opacity: 1;
}
.interactive {
position: absolute;
background: radial-gradient(circle at center, rgba(var(--color-interactive), 0.8) 0, rgba(var(--color-interactive), 0) 50%) no-repeat;
mix-blend-mode: var(--blending);
width: 100%;
height: 100%;
top: -50%;
left: -50%;
opacity: 0.7;
}
}}
</style>
"""
st.markdown(page_bg_img, unsafe_allow_html=True)
# st.image("logo.png", width=200, height=200)
st.image("logo.png", width=80)
st.subheader(':violet[NLP HUB®]')
st.markdown("")
st.markdown("")
st.markdown("")
st.markdown("")
st.subheader('Amazon Sentiment Analysis using FineTuned :red[GPT-2] Pre-Trained Model')
sentiment_model = pipeline(model="ashok2216/gpt2-amazon-sentiment-classifier")
# Example usage:-
sample_url = 'https://www.amazon.in/Dell-Inspiron-i7-1255U-Processor-Platinum/product-reviews/B0C9F142V6/ref=cm_cr_dp_d_show_all_btm?ie=UTF8&reviewerType=all_reviews'
url = st.text_input("Amazon product link", sample_url)
st.button("Re-run")
st.write("Done")
st.subheader('', divider='rainbow')
try:
all_reviews = scrape_all_pages(url)
# Convert to DataFrame for further analysis
reviews = pd.DataFrame(all_reviews)
reviews['processed_text'] = reviews['content'].apply(preprocess)
# st.dataframe(reviews, use_container_width=True)
# st.markdown(sentiment_model(['It is Super!']))
sentiments = []
for text in reviews['processed_text']:
if list(sentiment_model(text)[0].values())[0] == 'LABEL_1':
output = 'Positive'
else:
output = 'Negative'
sentiments.append(output)
reviews['sentiments'] = sentiments
st.markdown(':white[Output]')
st.dataframe(reviews, use_container_width=True)
# sns.countplot(reviews['sentiments'])
except KeyError:
st.markdown('Please :red[Re-run] the app')
|