File size: 26,252 Bytes
76220b0
3d1f22b
76220b0
 
 
3d1f22b
76220b0
3d1f22b
76220b0
 
 
 
 
3d1f22b
76220b0
 
 
 
 
 
bee96b8
76220b0
5d0cbef
76220b0
 
 
47b8f4b
 
76220b0
47b8f4b
76220b0
bee96b8
47b8f4b
bee96b8
 
 
 
 
47b8f4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d1f22b
47b8f4b
56502a7
 
 
3d1f22b
47b8f4b
 
 
 
 
56502a7
47b8f4b
 
56502a7
47b8f4b
 
 
 
 
 
56502a7
 
 
 
 
 
47b8f4b
 
 
3d1f22b
56502a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76220b0
47b8f4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76220b0
47b8f4b
 
 
 
 
 
 
 
 
 
 
 
 
56502a7
 
 
 
47b8f4b
b4b6994
56502a7
 
 
 
 
 
 
b4b6994
56502a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47b8f4b
56502a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47b8f4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56502a7
47b8f4b
 
 
 
 
56502a7
 
 
 
3d1f22b
56502a7
47b8f4b
3d1f22b
56502a7
 
 
 
 
 
 
 
 
 
 
 
 
3d1f22b
56502a7
72f281a
56502a7
 
28e6931
56502a7
 
 
 
 
a059ac5
 
 
 
 
56502a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72f281a
56502a7
 
 
 
 
 
 
 
 
 
 
 
28e6931
76220b0
47b8f4b
 
 
 
 
 
76220b0
 
 
 
 
 
 
3d1f22b
76220b0
 
 
47b8f4b
 
 
76220b0
 
47b8f4b
 
 
 
56502a7
47b8f4b
 
56502a7
47b8f4b
 
 
 
 
 
 
15d9f57
 
47b8f4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76220b0
 
 
 
 
 
4e6b935
76220b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3639373
 
 
76220b0
 
 
4e6b935
76220b0
 
 
 
 
 
4e6b935
76220b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e6b935
76220b0
 
 
 
 
 
4e6b935
76220b0
 
4e6b935
76220b0
 
 
 
4e6b935
76220b0
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
'''Copyright 2024 Ashok Kumar

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.'''

import os
import requests
import json
import pandas as pd
import geopandas as gpd
import tzlocal
import pytz
from PIL import Image
import contextily as ctx
from datetime import datetime
from geopy.exc import GeocoderTimedOut
from geopy.geocoders import Nominatim
import folium
from folium import plugins
import streamlit as st
import streamlit_folium as st_folium
from data import flight_data
from huggingface_hub import InferenceClient
import branca.colormap as cm
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
from difflib import get_close_matches
import warnings
warnings.filterwarnings('ignore')
import time

# Cache the airport data to avoid reloading it every time
@st.cache_data(ttl=3600)  # Cache for 1 hour
def load_airport_data():
    data_url = "https://raw.githubusercontent.com/ashok2216-A/ashok_airport-data/main/data/airports.dat"
    column_names = ["Airport ID", "Name", "City", "Country", "IATA/FAA", "ICAO", "Latitude", "Longitude",
                    "Altitude", "Timezone", "DST", "Tz database time zone", "Type", "Source"]
    return pd.read_csv(data_url, header=None, names=column_names)

# Cache geocoding results
@st.cache_data(ttl=3600)
def get_location(country):
    geolocator = Nominatim(user_agent="flight_tracker")
    return geolocator.geocode(country)

# Cache flight data fetching
@st.cache_data(ttl=60)  # Cache for 1 minute
def fetch_flight_data(lat_min, lat_max, lon_min, lon_max):
    try:
        # OpenSky Network API endpoint
        url = "https://opensky-network.org/api/states/all"
        
        # Parameters for the request
        params = {
            'lamin': lat_min,
            'lamax': lat_max,
            'lomin': lon_min,
            'lomax': lon_max
        }
        
        # Make the request with a timeout
        response = requests.get(url, params=params, timeout=10)
        
        # Check if the request was successful
        response.raise_for_status()
        
        # Parse the JSON response
        data = response.json()
        
        # Check if we got valid data
        if not data or 'states' not in data:
            st.warning("No flight data available for the selected area.")
            return {'states': [], 'time': 0}
            
        return data
        
    except requests.exceptions.RequestException as e:
        st.error(f"Error fetching flight data: {str(e)}")
        return {'states': [], 'time': 0}
    except json.JSONDecodeError as e:
        st.error(f"Error parsing flight data: {str(e)}")
        return {'states': [], 'time': 0}
    except Exception as e:
        st.error(f"Unexpected error: {str(e)}")
        return {'states': [], 'time': 0}

# Hugging Face model configuration
HF_API_URL = "https://api-inference.huggingface.co/models/google/flan-t5-large"
HF_TOKEN = os.getenv("HF_TOKEN")
headers = {"Authorization": f"Bearer {HF_TOKEN}"}

def query_llm(prompt):
    try:
        payload = {
            "inputs": prompt,
            "parameters": {
                "max_length": 250,
                "temperature": 0.1,
                "top_p": 0.95,
                "do_sample": False
            }
        }
        
        response = requests.post(HF_API_URL, headers=headers, json=payload)
        response.raise_for_status()
        return response.json()[0]['generated_text']
    except requests.exceptions.HTTPError as e:
        if e.response.status_code == 403:
            st.warning("Language model access is currently restricted. Using direct flight data display instead.")
        else:
            st.error(f"Error querying language model: {str(e)}")
        return None
    except Exception as e:
        st.error(f"Error querying language model: {str(e)}")
        return None

def create_flight_embeddings(geo_df):
    """Create embeddings for flight data to enable semantic search"""
    try:
        model = SentenceTransformer('all-MiniLM-L6-v2')
        
        # Create text representations of flight data
        flight_texts = []
        for _, row in geo_df.iterrows():
            text = f"Flight {row['callsign']} from {row['origin_country']} "
            text += f"at altitude {row['baro_altitude']}m, speed {row['velocity']}m/s, "
            text += f"heading {row['true_track']}°"
            flight_texts.append(text)
        
        # Generate embeddings
        embeddings = model.encode(flight_texts)
        return embeddings, flight_texts
    except Exception as e:
        st.warning(f"Could not create embeddings: {str(e)}")
        return None, None

def find_similar_flights(identifier, geo_df, embeddings, flight_texts, threshold=0.7):
    """Find similar flights using semantic search"""
    try:
        model = SentenceTransformer('all-MiniLM-L6-v2')
        
        # Create query embedding
        query_embedding = model.encode([identifier])
        
        # Calculate similarities
        similarities = cosine_similarity(query_embedding, embeddings)[0]
        
        # Find similar flights
        similar_indices = [i for i, sim in enumerate(similarities) if sim > threshold]
        if similar_indices:
            return geo_df.iloc[similar_indices]
        return None
    except Exception as e:
        st.warning(f"Error in semantic search: {str(e)}")
        return None

def query_flight_data(geo_df, question):
    # Preprocess the question to extract key information
    question = question.lower().strip()
    
    # Common flight information queries and their corresponding columns
    query_mappings = {
        'callsign': ['callsign'],
        'altitude': ['baro_altitude', 'geo_altitude'],
        'speed': ['velocity'],
        'direction': ['true_track'],
        'country': ['origin_country'],
        'squawk': ['squawk'],
        'icao': ['icao24'],
        'vertical': ['vertical_rate'],
        'ground': ['on_ground'],
        'position': ['latitude', 'longitude'],
        'time': ['time_position', 'last_contact']
    }
    
    # Extract the identifier (usually callsign or icao) from the question
    identifier = None
    if 'for' in question:
        identifier = question.split('for')[-1].strip()
    elif 'of' in question:
        identifier = question.split('of')[-1].strip()
    elif 'about' in question:
        identifier = question.split('about')[-1].strip()
    
    if not identifier:
        return "Please specify a flight identifier (callsign or ICAO code) in your question."
    
    # Clean and normalize the identifier
    identifier = identifier.strip().upper()
    
    # Try to find the flight by callsign or icao (case-insensitive)
    flight_data = None
    
    # First try exact match
    if identifier in geo_df['callsign'].str.upper().values:
        flight_data = geo_df[geo_df['callsign'].str.upper() == identifier]
    elif identifier in geo_df['icao24'].str.upper().values:
        flight_data = geo_df[geo_df['icao24'].str.upper() == identifier]
    
    # If no exact match, try partial match
    if flight_data is None or flight_data.empty:
        # Try matching without spaces or special characters
        clean_identifier = ''.join(filter(str.isalnum, identifier))
        if not geo_df['callsign'].empty:
            clean_callsigns = geo_df['callsign'].fillna('').apply(lambda x: ''.join(filter(str.isalnum, str(x).upper())))
            matches = clean_callsigns == clean_identifier
            if matches.any():
                flight_data = geo_df[matches]
    
    # If still no match, try fuzzy matching
    if flight_data is None or flight_data.empty:
        try:
            all_callsigns = geo_df['callsign'].fillna('').str.upper().unique()
            close_matches = get_close_matches(identifier, all_callsigns, n=1, cutoff=0.8)
            if close_matches:
                flight_data = geo_df[geo_df['callsign'].str.upper() == close_matches[0]]
        except:
            pass
    
    # If still no match, try semantic search using RAG
    if flight_data is None or flight_data.empty:
        try:
            # Create embeddings for all flights
            embeddings, flight_texts = create_flight_embeddings(geo_df)
            if embeddings is not None:
                # Try to find similar flights
                similar_flights = find_similar_flights(identifier, geo_df, embeddings, flight_texts)
                if similar_flights is not None and not similar_flights.empty:
                    flight_data = similar_flights
                    st.info(f"Found similar flight(s) to {identifier}")
        except Exception as e:
            st.warning(f"Semantic search failed: {str(e)}")
    
    if flight_data is None or flight_data.empty:
        # If still no match, show available flights
        available_flights = geo_df['callsign'].dropna().unique()
        if len(available_flights) > 0:
            return f"Could not find flight {identifier}. Available flights: {', '.join(available_flights[:10])}..."
        return f"Could not find flight {identifier}. No flights currently available in the selected area."
    
    # Prepare flight data for display
    flight_info = {}
    for col in flight_data.columns:
        if col in flight_data.columns:
            value = flight_data[col].iloc[0]
            if pd.notna(value):
                if col == 'baro_altitude' or col == 'geo_altitude':
                    flight_info[col] = f"{value} meters"
                elif col == 'velocity':
                    flight_info[col] = f"{value} m/s"
                elif col == 'true_track':
                    flight_info[col] = f"{value} degrees"
                elif col == 'vertical_rate':
                    flight_info[col] = f"{value} m/s"
                elif col == 'latitude':
                    flight_info[col] = f"{value}° N"
                elif col == 'longitude':
                    flight_info[col] = f"{value}° E"
    else:
                    flight_info[col] = str(value)
    
    if not flight_info:
        return f"No information available for flight {identifier}."
    
    # Try to get LLM response, but fall back to direct display if it fails
    try:
        # Create a prompt for the LLM
        prompt = f"""Answer this question about flight {identifier}: {question}

Available flight data:
{json.dumps(flight_info, indent=2)}

Provide a clear and concise answer focusing on the specific information requested."""
        
        llm_response = query_llm(prompt)
        if llm_response:
            return llm_response
    except:
        pass
    
    # Fallback to direct data display
    response = f"Flight Information for {identifier}:\n"
    for key, value in flight_info.items():
        response += f"- {key.replace('_', ' ').title()}: {value}\n"
    return response

@st.cache_data(ttl=60)  # Cache for 1 minute
def get_traffic_gdf(lat_min, lat_max, lon_min, lon_max, local_time_zone, _loc, flight_info):
    # Get cached flight data
    json_dict = fetch_flight_data(lat_min, lat_max, lon_min, lon_max)
    
    if not json_dict or not json_dict.get('states'):
        st.warning("No flight data available for the selected area.")
        return None

    try:
        # Define columns for the DataFrame
        columns = ["icao24","callsign","origin_country","time_position","last_contact","longitude","latitude",
                "baro_altitude","on_ground","velocity","true_track","vertical_rate","sensors","geo_altitude",
                "squawk","spi","position_source"]
        
        unix_timestamp = int(json_dict["time"])
        local_timezone = pytz.timezone(local_time_zone)
        local_time = datetime.fromtimestamp(unix_timestamp, local_timezone).strftime('%Y-%m-%d %H:%M:%S')
        
        # Optimize DataFrame creation
        state_df = pd.DataFrame(json_dict["states"], columns=columns)
        state_df['time'] = local_time
        
        # Create GeoDataFrame more efficiently
        gdf = gpd.GeoDataFrame(
            state_df,
            geometry=gpd.points_from_xy(state_df.longitude, state_df.latitude),
            crs="EPSG:4326"
        )
        
        # Display information
        st.title("Live Flight Tracker")
        st.subheader('Flight Details', divider='rainbow')
        st.write('Location: {0}'.format(_loc))
        st.write('Current Local Time: {0}-{1}:'.format(local_time, local_time_zone))
        st.write("Minimum_latitude is {0} and Maximum_latitude is {1}".format(lat_min, lat_max))
        st.write("Minimum_longitude is {0} and Maximum_longitude is {1}".format(lon_min, lon_max))
        st.write('Number of Visible Flights: {}'.format(len(json_dict['states'])))
        st.write('Plotting the flight: {}'.format(flight_info))
        st.subheader('Map Visualization', divider='rainbow')
        st.write('****Click ":orange[Update Map]" Button to Refresh the Map****')
        return gdf
        
    except Exception as e:
        st.error(f"Error processing flight data: {str(e)}")
        return None

def flight_tracking(flight_view_level, country, local_time_zone, flight_info, airport, color):
    # Get cached location data
    loc = get_location(country)
    if not loc:
        st.error("Could not find location. Please try a different country name.")
        return
    
    loc_box = loc[1]
    extend_left =+12*flight_view_level
    extend_right =+10*flight_view_level
    extend_top =+10*flight_view_level
    extend_bottom =+ 18*flight_view_level
    lat_min, lat_max = (loc_box[0] - extend_left), loc_box[0]+extend_right
    lon_min, lon_max = (loc_box[1] - extend_bottom), loc_box[1]+extend_top
    
    columns = ["icao24","callsign","origin_country","time_position","last_contact","longitude","latitude",
            "baro_altitude","on_ground","velocity","true_track","vertical_rate","sensors","geo_altitude",
            "squawk","spi","position_source",]
    
    # Get cached airport data
    airport_df = load_airport_data()
    airport_locations = airport_df[["Name", "City", "Country", "IATA/FAA", "Latitude", "Longitude"]]
    airport_country_loc = airport_locations[airport_locations['Country'] == str(loc)]
    airport_country_loc = airport_country_loc[(airport_country_loc['Country'] == str(loc)) & 
                                            (airport_country_loc['Latitude'] >= lat_min) &
                                            (airport_country_loc['Latitude'] <= lat_max) & 
                                            (airport_country_loc['Longitude'] >= lon_min) &
                            (airport_country_loc['Longitude'] <= lon_max)]
    
    # Get traffic data
    geo_df = get_traffic_gdf(lat_min, lat_max, lon_min, lon_max, local_time_zone, loc, flight_info)
    if geo_df is None:
        return
    
    # Create a base map
    m = folium.Map(
        location=[loc_box[0], loc_box[1]],
        zoom_start=6,
        tiles='CartoDB dark_matter',
        show_grid=False
    )
    
    # Create colormap
    if color == "rainbow":
        colormap = cm.LinearColormap(
            colors=['red', 'yellow', 'green', 'blue', 'purple'],
            vmin=geo_df[flight_info].min(),
            vmax=geo_df[flight_info].max()
        )
    elif color == "ice":
        colormap = cm.LinearColormap(
            colors=['white', 'lightblue', 'blue'],
            vmin=geo_df[flight_info].min(),
            vmax=geo_df[flight_info].max()
        )
    else:  # hot
        colormap = cm.LinearColormap(
            colors=['yellow', 'orange', 'red'],
            vmin=geo_df[flight_info].min(),
            vmax=geo_df[flight_info].max()
        )
    
    # Pre-compute icon HTML template
    icon_template = """
    <div style="transform: rotate({rotation_angle}deg);">
        <svg width="24" height="24" viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg">
            <path d="M21 16v-2l-8-5V3.5c0-.83-.67-1.5-1.5-1.5S10 2.67 10 3.5V9l-8 5v2l8-2.5V19l-2 1.5V22l3.5-1 3.5 1v-1.5L13 19v-5.5l8 2.5z" fill="{color_hex}"/>
        </svg>
    </div>
    """
    
    # Pre-compute tooltip template
    tooltip_template = """
    <div style="font-size: 12px; font-family: Arial, sans-serif; max-width: 300px;">
        <div style="font-weight: bold; font-size: 14px; margin-bottom: 5px; color: #2c3e50;">
            Flight: {callsign}
        </div>
        <div style="display: grid; grid-template-columns: 1fr 1fr; gap: 5px;">
            {rows}
        </div>
    </div>
    """
    
    # Add flight markers
    for idx, row in geo_df.iterrows():
        if pd.notna(row['latitude']) and pd.notna(row['longitude']):
            # Get color based on flight_info value
            value = row[flight_info] if pd.notna(row[flight_info]) else geo_df[flight_info].min()
            color_hex = colormap(value)
            
            # Create custom flight icon with rotation
            rotation_angle = row['true_track'] if pd.notna(row['true_track']) else 0
            icon_html = icon_template.format(rotation_angle=rotation_angle, color_hex=color_hex)
            
            # Create tooltip rows
            tooltip_rows = []
            for col in columns:
                val = row[col] if pd.notna(row[col]) else 'N/A'
                if col in ['baro_altitude', 'geo_altitude']:
                    val = f"{val} m"
                elif col == 'velocity':
                    val = f"{val} m/s"
                elif col == 'true_track':
                    val = f"{val}°"
                tooltip_rows.append(f'<div style="font-weight: bold;">{col}:</div><div>{val}</div>')
            
            # Create tooltip
            tooltip_html = tooltip_template.format(
                callsign=row['callsign'] if pd.notna(row['callsign']) else 'Unknown',
                rows='\n'.join(tooltip_rows)
            )
            
            # Create popup content
            popup_content = f"""
            <div style="font-size: 14px; font-family: Arial, sans-serif; max-width: 300px;">
                <div style="font-weight: bold; font-size: 16px; margin-bottom: 10px; color: #2c3e50;">
                    Flight: {row['callsign'] if pd.notna(row['callsign']) else 'Unknown'}
                </div>
                <div style="display: grid; grid-template-columns: 1fr 1fr; gap: 5px;">
                    <div style="font-weight: bold;">ICAO24:</div>
                    <div>{row['icao24'] if pd.notna(row['icao24']) else 'N/A'}</div>
                    <div style="font-weight: bold;">Origin Country:</div>
                    <div>{row['origin_country'] if pd.notna(row['origin_country']) else 'N/A'}</div>
                    <div style="font-weight: bold;">Time Position:</div>
                    <div>{row['time_position'] if pd.notna(row['time_position']) else 'N/A'}</div>
                    <div style="font-weight: bold;">Last Contact:</div>
                    <div>{row['last_contact'] if pd.notna(row['last_contact']) else 'N/A'}</div>
                    <div style="font-weight: bold;">Baro Altitude:</div>
                    <div>{row['baro_altitude'] if pd.notna(row['baro_altitude']) else 'N/A'} m</div>
                    <div style="font-weight: bold;">Geo Altitude:</div>
                    <div>{row['geo_altitude'] if pd.notna(row['geo_altitude']) else 'N/A'} m</div>
                    <div style="font-weight: bold;">Velocity:</div>
                    <div>{row['velocity'] if pd.notna(row['velocity']) else 'N/A'} m/s</div>
                    <div style="font-weight: bold;">True Track:</div>
                    <div>{row['true_track'] if pd.notna(row['true_track']) else 'N/A'}°</div>
                    <div style="font-weight: bold;">Vertical Rate:</div>
                    <div>{row['vertical_rate'] if pd.notna(row['vertical_rate']) else 'N/A'} m/s</div>
                    <div style="font-weight: bold;">Squawk:</div>
                    <div>{row['squawk'] if pd.notna(row['squawk']) else 'N/A'}</div>
                    <div style="font-weight: bold;">On Ground:</div>
                    <div>{row['on_ground'] if pd.notna(row['on_ground']) else 'N/A'}</div>
                    <div style="font-weight: bold;">SPI:</div>
                    <div>{row['spi'] if pd.notna(row['spi']) else 'N/A'}</div>
                    <div style="font-weight: bold;">Position Source:</div>
                    <div>{row['position_source'] if pd.notna(row['position_source']) else 'N/A'}</div>
                </div>
            </div>
            """
            
            # Create custom icon
            icon = folium.DivIcon(
                html=icon_html,
                icon_size=(24, 24),
                icon_anchor=(12, 12)
            )
            
            # Add marker to map
            folium.Marker(
                location=[row['latitude'], row['longitude']],
                icon=icon,
                popup=folium.Popup(popup_content, max_width=300),
                tooltip=tooltip_html
            ).add_to(m)
    
    # Add airports if selected
    if airport == 1:
        for idx, row in airport_country_loc.iterrows():
            folium.Marker(
                location=[row['Latitude'], row['Longitude']],
                icon=folium.Icon(icon='plane', prefix='fa', color='blue'),
                popup=f"<b>{row['Name']}</b><br>IATA: {row['IATA/FAA']}<br>City: {row['City']}",
                tooltip=f"Airport: {row['Name']}"
            ).add_to(m)
    
    # Add colormap to the map
    colormap.add_to(m)
    
    # Add a layer control
    folium.LayerControl().add_to(m)
    
    # Display the map in Streamlit
    st_folium.folium_static(m, width=1200, height=600)
    return None

st.set_page_config(
    layout="wide"
)
image = Image.open('logo.png')
add_selectbox = st.sidebar.image(
    image, width=150
)
add_selectbox = st.sidebar.subheader(
    "Configure Map",divider='rainbow'
)
with st.sidebar:
    Refresh = st.button('Update Map', key=1)
    on = st.toggle('View Airports')
    if on:
        air_port = 1
        st.write(':rainbow[Nice Work Buddy!]')
        st.write('Now Airports are Visible')
    else:
        air_port=0
    view = st.slider('Increase Flight Visibility',1,6,2)
    st.write("You Selected:", view)
    cou = st.text_input('Type Country Name', 'north america')
    st.write('The current Country name is', cou)
    time = st.text_input('Type Time Zone Name (Ex: America/Toronto, Europe/Berlin)', 'Asia/Kolkata')
    st.write('The current Time Zone is', time)
    info = st.selectbox(
    'Select Flight Information',
    ('baro_altitude',
        'on_ground', 'velocity',
        'geo_altitude'))
    st.write('Plotting the data of Flight:', info)
    clr = st.radio('Pick A Color for Scatter Plot',["rainbow","ice","hot"])
    if clr == "rainbow":
        st.write('The current color is', "****:rainbow[Rainbow]****")
    elif clr == 'ice':
        st.write('The current color is', "****:blue[Ice]****")
    elif clr == 'hot':
        st.write('The current color is', "****:red[Hot]****")
    else: None
# with st.spinner('Wait!, We Requesting API Data...'):
# try:
flight_tracking(flight_view_level=view, country=cou,flight_info=info,
            local_time_zone=time, airport=air_port, color=clr)
st.subheader('Ask your Questions!', divider='rainbow')
st.write("Google's TAPAS base LLM model 🤖")
geo_df = flight_data(flight_view_level = view, country= cou, flight_info=info, local_time_zone=time, airport=1)
question = st.text_input('Type your questions here', "What is the squawk code for SWR9XD?")
result = query_flight_data(geo_df, question)
st.markdown(result)
# except TypeError:
#     st.error(':red[Error: ] Please Re-run this page.', icon="🚨")
#     st.button('Re-run', type="primary")
# st.snow()



# import streamlit as st
# from huggingface_hub import InferenceClient
# import os

# hf_token = os.getenv("HF_TOKEN")
# # Set up the Hugging Face Inference Client
# client = InferenceClient(
#     provider="together",  # Replace with the correct provider if needed
#     api_key= hf_token  # Replace with your Hugging Face API key
# )

# # Streamlit app title
# st.title("🤖 Deepseek R1 Chatbot")
# st.write("Chat with the Deepseek R1 model powered by Hugging Face Inference API.")

# # Initialize session state to store chat history
# if "messages" not in st.session_state:
#     st.session_state.messages = []

# # Display chat history
# for message in st.session_state.messages:
#     with st.chat_message(message["role"]):
#         st.markdown(message["content"])

# # User input
# if prompt := st.chat_input("What would you like to ask?"):
#     # Add user message to chat history
#     st.session_state.messages.append({"role": "user", "content": prompt})
#     with st.chat_message("user"):
#         st.markdown(prompt)

#     # Generate response from Deepseek R1 model
#     with st.spinner("Thinking..."):
#         try:
#             # Prepare the messages for the model
#             messages = [{"role": m["role"], "content": m["content"]} for m in st.session_state.messages]
            
#             # Call the Hugging Face Inference API
#             completion = client.chat.completions.create(
#                 model="deepseek-ai/DeepSeek-R1",  # Replace with the correct model name
#                 messages=messages,
#                 max_tokens=500
#             )
            
#             # Extract the model's response
#             response = completion.choices[0].message.content

#             # Add model's response to chat history
#             st.session_state.messages.append({"role": "assistant", "content": response})
#             with st.chat_message("assistant"):
#                 st.markdown(response)
        
#         except Exception as e:
#             st.error(f"An error occurred: {e}")