File size: 26,252 Bytes
76220b0 3d1f22b 76220b0 3d1f22b 76220b0 3d1f22b 76220b0 3d1f22b 76220b0 bee96b8 76220b0 5d0cbef 76220b0 47b8f4b 76220b0 47b8f4b 76220b0 bee96b8 47b8f4b bee96b8 47b8f4b 3d1f22b 47b8f4b 56502a7 3d1f22b 47b8f4b 56502a7 47b8f4b 56502a7 47b8f4b 56502a7 47b8f4b 3d1f22b 56502a7 76220b0 47b8f4b 76220b0 47b8f4b 56502a7 47b8f4b b4b6994 56502a7 b4b6994 56502a7 47b8f4b 56502a7 47b8f4b 56502a7 47b8f4b 56502a7 3d1f22b 56502a7 47b8f4b 3d1f22b 56502a7 3d1f22b 56502a7 72f281a 56502a7 28e6931 56502a7 a059ac5 56502a7 72f281a 56502a7 28e6931 76220b0 47b8f4b 76220b0 3d1f22b 76220b0 47b8f4b 76220b0 47b8f4b 56502a7 47b8f4b 56502a7 47b8f4b 15d9f57 47b8f4b 76220b0 4e6b935 76220b0 3639373 76220b0 4e6b935 76220b0 4e6b935 76220b0 4e6b935 76220b0 4e6b935 76220b0 4e6b935 76220b0 4e6b935 76220b0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 |
'''Copyright 2024 Ashok Kumar
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.'''
import os
import requests
import json
import pandas as pd
import geopandas as gpd
import tzlocal
import pytz
from PIL import Image
import contextily as ctx
from datetime import datetime
from geopy.exc import GeocoderTimedOut
from geopy.geocoders import Nominatim
import folium
from folium import plugins
import streamlit as st
import streamlit_folium as st_folium
from data import flight_data
from huggingface_hub import InferenceClient
import branca.colormap as cm
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
from difflib import get_close_matches
import warnings
warnings.filterwarnings('ignore')
import time
# Cache the airport data to avoid reloading it every time
@st.cache_data(ttl=3600) # Cache for 1 hour
def load_airport_data():
data_url = "https://raw.githubusercontent.com/ashok2216-A/ashok_airport-data/main/data/airports.dat"
column_names = ["Airport ID", "Name", "City", "Country", "IATA/FAA", "ICAO", "Latitude", "Longitude",
"Altitude", "Timezone", "DST", "Tz database time zone", "Type", "Source"]
return pd.read_csv(data_url, header=None, names=column_names)
# Cache geocoding results
@st.cache_data(ttl=3600)
def get_location(country):
geolocator = Nominatim(user_agent="flight_tracker")
return geolocator.geocode(country)
# Cache flight data fetching
@st.cache_data(ttl=60) # Cache for 1 minute
def fetch_flight_data(lat_min, lat_max, lon_min, lon_max):
try:
# OpenSky Network API endpoint
url = "https://opensky-network.org/api/states/all"
# Parameters for the request
params = {
'lamin': lat_min,
'lamax': lat_max,
'lomin': lon_min,
'lomax': lon_max
}
# Make the request with a timeout
response = requests.get(url, params=params, timeout=10)
# Check if the request was successful
response.raise_for_status()
# Parse the JSON response
data = response.json()
# Check if we got valid data
if not data or 'states' not in data:
st.warning("No flight data available for the selected area.")
return {'states': [], 'time': 0}
return data
except requests.exceptions.RequestException as e:
st.error(f"Error fetching flight data: {str(e)}")
return {'states': [], 'time': 0}
except json.JSONDecodeError as e:
st.error(f"Error parsing flight data: {str(e)}")
return {'states': [], 'time': 0}
except Exception as e:
st.error(f"Unexpected error: {str(e)}")
return {'states': [], 'time': 0}
# Hugging Face model configuration
HF_API_URL = "https://api-inference.huggingface.co/models/google/flan-t5-large"
HF_TOKEN = os.getenv("HF_TOKEN")
headers = {"Authorization": f"Bearer {HF_TOKEN}"}
def query_llm(prompt):
try:
payload = {
"inputs": prompt,
"parameters": {
"max_length": 250,
"temperature": 0.1,
"top_p": 0.95,
"do_sample": False
}
}
response = requests.post(HF_API_URL, headers=headers, json=payload)
response.raise_for_status()
return response.json()[0]['generated_text']
except requests.exceptions.HTTPError as e:
if e.response.status_code == 403:
st.warning("Language model access is currently restricted. Using direct flight data display instead.")
else:
st.error(f"Error querying language model: {str(e)}")
return None
except Exception as e:
st.error(f"Error querying language model: {str(e)}")
return None
def create_flight_embeddings(geo_df):
"""Create embeddings for flight data to enable semantic search"""
try:
model = SentenceTransformer('all-MiniLM-L6-v2')
# Create text representations of flight data
flight_texts = []
for _, row in geo_df.iterrows():
text = f"Flight {row['callsign']} from {row['origin_country']} "
text += f"at altitude {row['baro_altitude']}m, speed {row['velocity']}m/s, "
text += f"heading {row['true_track']}°"
flight_texts.append(text)
# Generate embeddings
embeddings = model.encode(flight_texts)
return embeddings, flight_texts
except Exception as e:
st.warning(f"Could not create embeddings: {str(e)}")
return None, None
def find_similar_flights(identifier, geo_df, embeddings, flight_texts, threshold=0.7):
"""Find similar flights using semantic search"""
try:
model = SentenceTransformer('all-MiniLM-L6-v2')
# Create query embedding
query_embedding = model.encode([identifier])
# Calculate similarities
similarities = cosine_similarity(query_embedding, embeddings)[0]
# Find similar flights
similar_indices = [i for i, sim in enumerate(similarities) if sim > threshold]
if similar_indices:
return geo_df.iloc[similar_indices]
return None
except Exception as e:
st.warning(f"Error in semantic search: {str(e)}")
return None
def query_flight_data(geo_df, question):
# Preprocess the question to extract key information
question = question.lower().strip()
# Common flight information queries and their corresponding columns
query_mappings = {
'callsign': ['callsign'],
'altitude': ['baro_altitude', 'geo_altitude'],
'speed': ['velocity'],
'direction': ['true_track'],
'country': ['origin_country'],
'squawk': ['squawk'],
'icao': ['icao24'],
'vertical': ['vertical_rate'],
'ground': ['on_ground'],
'position': ['latitude', 'longitude'],
'time': ['time_position', 'last_contact']
}
# Extract the identifier (usually callsign or icao) from the question
identifier = None
if 'for' in question:
identifier = question.split('for')[-1].strip()
elif 'of' in question:
identifier = question.split('of')[-1].strip()
elif 'about' in question:
identifier = question.split('about')[-1].strip()
if not identifier:
return "Please specify a flight identifier (callsign or ICAO code) in your question."
# Clean and normalize the identifier
identifier = identifier.strip().upper()
# Try to find the flight by callsign or icao (case-insensitive)
flight_data = None
# First try exact match
if identifier in geo_df['callsign'].str.upper().values:
flight_data = geo_df[geo_df['callsign'].str.upper() == identifier]
elif identifier in geo_df['icao24'].str.upper().values:
flight_data = geo_df[geo_df['icao24'].str.upper() == identifier]
# If no exact match, try partial match
if flight_data is None or flight_data.empty:
# Try matching without spaces or special characters
clean_identifier = ''.join(filter(str.isalnum, identifier))
if not geo_df['callsign'].empty:
clean_callsigns = geo_df['callsign'].fillna('').apply(lambda x: ''.join(filter(str.isalnum, str(x).upper())))
matches = clean_callsigns == clean_identifier
if matches.any():
flight_data = geo_df[matches]
# If still no match, try fuzzy matching
if flight_data is None or flight_data.empty:
try:
all_callsigns = geo_df['callsign'].fillna('').str.upper().unique()
close_matches = get_close_matches(identifier, all_callsigns, n=1, cutoff=0.8)
if close_matches:
flight_data = geo_df[geo_df['callsign'].str.upper() == close_matches[0]]
except:
pass
# If still no match, try semantic search using RAG
if flight_data is None or flight_data.empty:
try:
# Create embeddings for all flights
embeddings, flight_texts = create_flight_embeddings(geo_df)
if embeddings is not None:
# Try to find similar flights
similar_flights = find_similar_flights(identifier, geo_df, embeddings, flight_texts)
if similar_flights is not None and not similar_flights.empty:
flight_data = similar_flights
st.info(f"Found similar flight(s) to {identifier}")
except Exception as e:
st.warning(f"Semantic search failed: {str(e)}")
if flight_data is None or flight_data.empty:
# If still no match, show available flights
available_flights = geo_df['callsign'].dropna().unique()
if len(available_flights) > 0:
return f"Could not find flight {identifier}. Available flights: {', '.join(available_flights[:10])}..."
return f"Could not find flight {identifier}. No flights currently available in the selected area."
# Prepare flight data for display
flight_info = {}
for col in flight_data.columns:
if col in flight_data.columns:
value = flight_data[col].iloc[0]
if pd.notna(value):
if col == 'baro_altitude' or col == 'geo_altitude':
flight_info[col] = f"{value} meters"
elif col == 'velocity':
flight_info[col] = f"{value} m/s"
elif col == 'true_track':
flight_info[col] = f"{value} degrees"
elif col == 'vertical_rate':
flight_info[col] = f"{value} m/s"
elif col == 'latitude':
flight_info[col] = f"{value}° N"
elif col == 'longitude':
flight_info[col] = f"{value}° E"
else:
flight_info[col] = str(value)
if not flight_info:
return f"No information available for flight {identifier}."
# Try to get LLM response, but fall back to direct display if it fails
try:
# Create a prompt for the LLM
prompt = f"""Answer this question about flight {identifier}: {question}
Available flight data:
{json.dumps(flight_info, indent=2)}
Provide a clear and concise answer focusing on the specific information requested."""
llm_response = query_llm(prompt)
if llm_response:
return llm_response
except:
pass
# Fallback to direct data display
response = f"Flight Information for {identifier}:\n"
for key, value in flight_info.items():
response += f"- {key.replace('_', ' ').title()}: {value}\n"
return response
@st.cache_data(ttl=60) # Cache for 1 minute
def get_traffic_gdf(lat_min, lat_max, lon_min, lon_max, local_time_zone, _loc, flight_info):
# Get cached flight data
json_dict = fetch_flight_data(lat_min, lat_max, lon_min, lon_max)
if not json_dict or not json_dict.get('states'):
st.warning("No flight data available for the selected area.")
return None
try:
# Define columns for the DataFrame
columns = ["icao24","callsign","origin_country","time_position","last_contact","longitude","latitude",
"baro_altitude","on_ground","velocity","true_track","vertical_rate","sensors","geo_altitude",
"squawk","spi","position_source"]
unix_timestamp = int(json_dict["time"])
local_timezone = pytz.timezone(local_time_zone)
local_time = datetime.fromtimestamp(unix_timestamp, local_timezone).strftime('%Y-%m-%d %H:%M:%S')
# Optimize DataFrame creation
state_df = pd.DataFrame(json_dict["states"], columns=columns)
state_df['time'] = local_time
# Create GeoDataFrame more efficiently
gdf = gpd.GeoDataFrame(
state_df,
geometry=gpd.points_from_xy(state_df.longitude, state_df.latitude),
crs="EPSG:4326"
)
# Display information
st.title("Live Flight Tracker")
st.subheader('Flight Details', divider='rainbow')
st.write('Location: {0}'.format(_loc))
st.write('Current Local Time: {0}-{1}:'.format(local_time, local_time_zone))
st.write("Minimum_latitude is {0} and Maximum_latitude is {1}".format(lat_min, lat_max))
st.write("Minimum_longitude is {0} and Maximum_longitude is {1}".format(lon_min, lon_max))
st.write('Number of Visible Flights: {}'.format(len(json_dict['states'])))
st.write('Plotting the flight: {}'.format(flight_info))
st.subheader('Map Visualization', divider='rainbow')
st.write('****Click ":orange[Update Map]" Button to Refresh the Map****')
return gdf
except Exception as e:
st.error(f"Error processing flight data: {str(e)}")
return None
def flight_tracking(flight_view_level, country, local_time_zone, flight_info, airport, color):
# Get cached location data
loc = get_location(country)
if not loc:
st.error("Could not find location. Please try a different country name.")
return
loc_box = loc[1]
extend_left =+12*flight_view_level
extend_right =+10*flight_view_level
extend_top =+10*flight_view_level
extend_bottom =+ 18*flight_view_level
lat_min, lat_max = (loc_box[0] - extend_left), loc_box[0]+extend_right
lon_min, lon_max = (loc_box[1] - extend_bottom), loc_box[1]+extend_top
columns = ["icao24","callsign","origin_country","time_position","last_contact","longitude","latitude",
"baro_altitude","on_ground","velocity","true_track","vertical_rate","sensors","geo_altitude",
"squawk","spi","position_source",]
# Get cached airport data
airport_df = load_airport_data()
airport_locations = airport_df[["Name", "City", "Country", "IATA/FAA", "Latitude", "Longitude"]]
airport_country_loc = airport_locations[airport_locations['Country'] == str(loc)]
airport_country_loc = airport_country_loc[(airport_country_loc['Country'] == str(loc)) &
(airport_country_loc['Latitude'] >= lat_min) &
(airport_country_loc['Latitude'] <= lat_max) &
(airport_country_loc['Longitude'] >= lon_min) &
(airport_country_loc['Longitude'] <= lon_max)]
# Get traffic data
geo_df = get_traffic_gdf(lat_min, lat_max, lon_min, lon_max, local_time_zone, loc, flight_info)
if geo_df is None:
return
# Create a base map
m = folium.Map(
location=[loc_box[0], loc_box[1]],
zoom_start=6,
tiles='CartoDB dark_matter',
show_grid=False
)
# Create colormap
if color == "rainbow":
colormap = cm.LinearColormap(
colors=['red', 'yellow', 'green', 'blue', 'purple'],
vmin=geo_df[flight_info].min(),
vmax=geo_df[flight_info].max()
)
elif color == "ice":
colormap = cm.LinearColormap(
colors=['white', 'lightblue', 'blue'],
vmin=geo_df[flight_info].min(),
vmax=geo_df[flight_info].max()
)
else: # hot
colormap = cm.LinearColormap(
colors=['yellow', 'orange', 'red'],
vmin=geo_df[flight_info].min(),
vmax=geo_df[flight_info].max()
)
# Pre-compute icon HTML template
icon_template = """
<div style="transform: rotate({rotation_angle}deg);">
<svg width="24" height="24" viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg">
<path d="M21 16v-2l-8-5V3.5c0-.83-.67-1.5-1.5-1.5S10 2.67 10 3.5V9l-8 5v2l8-2.5V19l-2 1.5V22l3.5-1 3.5 1v-1.5L13 19v-5.5l8 2.5z" fill="{color_hex}"/>
</svg>
</div>
"""
# Pre-compute tooltip template
tooltip_template = """
<div style="font-size: 12px; font-family: Arial, sans-serif; max-width: 300px;">
<div style="font-weight: bold; font-size: 14px; margin-bottom: 5px; color: #2c3e50;">
Flight: {callsign}
</div>
<div style="display: grid; grid-template-columns: 1fr 1fr; gap: 5px;">
{rows}
</div>
</div>
"""
# Add flight markers
for idx, row in geo_df.iterrows():
if pd.notna(row['latitude']) and pd.notna(row['longitude']):
# Get color based on flight_info value
value = row[flight_info] if pd.notna(row[flight_info]) else geo_df[flight_info].min()
color_hex = colormap(value)
# Create custom flight icon with rotation
rotation_angle = row['true_track'] if pd.notna(row['true_track']) else 0
icon_html = icon_template.format(rotation_angle=rotation_angle, color_hex=color_hex)
# Create tooltip rows
tooltip_rows = []
for col in columns:
val = row[col] if pd.notna(row[col]) else 'N/A'
if col in ['baro_altitude', 'geo_altitude']:
val = f"{val} m"
elif col == 'velocity':
val = f"{val} m/s"
elif col == 'true_track':
val = f"{val}°"
tooltip_rows.append(f'<div style="font-weight: bold;">{col}:</div><div>{val}</div>')
# Create tooltip
tooltip_html = tooltip_template.format(
callsign=row['callsign'] if pd.notna(row['callsign']) else 'Unknown',
rows='\n'.join(tooltip_rows)
)
# Create popup content
popup_content = f"""
<div style="font-size: 14px; font-family: Arial, sans-serif; max-width: 300px;">
<div style="font-weight: bold; font-size: 16px; margin-bottom: 10px; color: #2c3e50;">
Flight: {row['callsign'] if pd.notna(row['callsign']) else 'Unknown'}
</div>
<div style="display: grid; grid-template-columns: 1fr 1fr; gap: 5px;">
<div style="font-weight: bold;">ICAO24:</div>
<div>{row['icao24'] if pd.notna(row['icao24']) else 'N/A'}</div>
<div style="font-weight: bold;">Origin Country:</div>
<div>{row['origin_country'] if pd.notna(row['origin_country']) else 'N/A'}</div>
<div style="font-weight: bold;">Time Position:</div>
<div>{row['time_position'] if pd.notna(row['time_position']) else 'N/A'}</div>
<div style="font-weight: bold;">Last Contact:</div>
<div>{row['last_contact'] if pd.notna(row['last_contact']) else 'N/A'}</div>
<div style="font-weight: bold;">Baro Altitude:</div>
<div>{row['baro_altitude'] if pd.notna(row['baro_altitude']) else 'N/A'} m</div>
<div style="font-weight: bold;">Geo Altitude:</div>
<div>{row['geo_altitude'] if pd.notna(row['geo_altitude']) else 'N/A'} m</div>
<div style="font-weight: bold;">Velocity:</div>
<div>{row['velocity'] if pd.notna(row['velocity']) else 'N/A'} m/s</div>
<div style="font-weight: bold;">True Track:</div>
<div>{row['true_track'] if pd.notna(row['true_track']) else 'N/A'}°</div>
<div style="font-weight: bold;">Vertical Rate:</div>
<div>{row['vertical_rate'] if pd.notna(row['vertical_rate']) else 'N/A'} m/s</div>
<div style="font-weight: bold;">Squawk:</div>
<div>{row['squawk'] if pd.notna(row['squawk']) else 'N/A'}</div>
<div style="font-weight: bold;">On Ground:</div>
<div>{row['on_ground'] if pd.notna(row['on_ground']) else 'N/A'}</div>
<div style="font-weight: bold;">SPI:</div>
<div>{row['spi'] if pd.notna(row['spi']) else 'N/A'}</div>
<div style="font-weight: bold;">Position Source:</div>
<div>{row['position_source'] if pd.notna(row['position_source']) else 'N/A'}</div>
</div>
</div>
"""
# Create custom icon
icon = folium.DivIcon(
html=icon_html,
icon_size=(24, 24),
icon_anchor=(12, 12)
)
# Add marker to map
folium.Marker(
location=[row['latitude'], row['longitude']],
icon=icon,
popup=folium.Popup(popup_content, max_width=300),
tooltip=tooltip_html
).add_to(m)
# Add airports if selected
if airport == 1:
for idx, row in airport_country_loc.iterrows():
folium.Marker(
location=[row['Latitude'], row['Longitude']],
icon=folium.Icon(icon='plane', prefix='fa', color='blue'),
popup=f"<b>{row['Name']}</b><br>IATA: {row['IATA/FAA']}<br>City: {row['City']}",
tooltip=f"Airport: {row['Name']}"
).add_to(m)
# Add colormap to the map
colormap.add_to(m)
# Add a layer control
folium.LayerControl().add_to(m)
# Display the map in Streamlit
st_folium.folium_static(m, width=1200, height=600)
return None
st.set_page_config(
layout="wide"
)
image = Image.open('logo.png')
add_selectbox = st.sidebar.image(
image, width=150
)
add_selectbox = st.sidebar.subheader(
"Configure Map",divider='rainbow'
)
with st.sidebar:
Refresh = st.button('Update Map', key=1)
on = st.toggle('View Airports')
if on:
air_port = 1
st.write(':rainbow[Nice Work Buddy!]')
st.write('Now Airports are Visible')
else:
air_port=0
view = st.slider('Increase Flight Visibility',1,6,2)
st.write("You Selected:", view)
cou = st.text_input('Type Country Name', 'north america')
st.write('The current Country name is', cou)
time = st.text_input('Type Time Zone Name (Ex: America/Toronto, Europe/Berlin)', 'Asia/Kolkata')
st.write('The current Time Zone is', time)
info = st.selectbox(
'Select Flight Information',
('baro_altitude',
'on_ground', 'velocity',
'geo_altitude'))
st.write('Plotting the data of Flight:', info)
clr = st.radio('Pick A Color for Scatter Plot',["rainbow","ice","hot"])
if clr == "rainbow":
st.write('The current color is', "****:rainbow[Rainbow]****")
elif clr == 'ice':
st.write('The current color is', "****:blue[Ice]****")
elif clr == 'hot':
st.write('The current color is', "****:red[Hot]****")
else: None
# with st.spinner('Wait!, We Requesting API Data...'):
# try:
flight_tracking(flight_view_level=view, country=cou,flight_info=info,
local_time_zone=time, airport=air_port, color=clr)
st.subheader('Ask your Questions!', divider='rainbow')
st.write("Google's TAPAS base LLM model 🤖")
geo_df = flight_data(flight_view_level = view, country= cou, flight_info=info, local_time_zone=time, airport=1)
question = st.text_input('Type your questions here', "What is the squawk code for SWR9XD?")
result = query_flight_data(geo_df, question)
st.markdown(result)
# except TypeError:
# st.error(':red[Error: ] Please Re-run this page.', icon="🚨")
# st.button('Re-run', type="primary")
# st.snow()
# import streamlit as st
# from huggingface_hub import InferenceClient
# import os
# hf_token = os.getenv("HF_TOKEN")
# # Set up the Hugging Face Inference Client
# client = InferenceClient(
# provider="together", # Replace with the correct provider if needed
# api_key= hf_token # Replace with your Hugging Face API key
# )
# # Streamlit app title
# st.title("🤖 Deepseek R1 Chatbot")
# st.write("Chat with the Deepseek R1 model powered by Hugging Face Inference API.")
# # Initialize session state to store chat history
# if "messages" not in st.session_state:
# st.session_state.messages = []
# # Display chat history
# for message in st.session_state.messages:
# with st.chat_message(message["role"]):
# st.markdown(message["content"])
# # User input
# if prompt := st.chat_input("What would you like to ask?"):
# # Add user message to chat history
# st.session_state.messages.append({"role": "user", "content": prompt})
# with st.chat_message("user"):
# st.markdown(prompt)
# # Generate response from Deepseek R1 model
# with st.spinner("Thinking..."):
# try:
# # Prepare the messages for the model
# messages = [{"role": m["role"], "content": m["content"]} for m in st.session_state.messages]
# # Call the Hugging Face Inference API
# completion = client.chat.completions.create(
# model="deepseek-ai/DeepSeek-R1", # Replace with the correct model name
# messages=messages,
# max_tokens=500
# )
# # Extract the model's response
# response = completion.choices[0].message.content
# # Add model's response to chat history
# st.session_state.messages.append({"role": "assistant", "content": response})
# with st.chat_message("assistant"):
# st.markdown(response)
# except Exception as e:
# st.error(f"An error occurred: {e}") |