ashok2216 commited on
Commit
bee96b8
·
verified ·
1 Parent(s): 15d9f57

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -11
app.py CHANGED
@@ -16,25 +16,25 @@ import os
16
  import requests
17
  import json
18
  import pandas as pd
19
- import requests
20
  import geopandas as gpd
21
  import tzlocal
22
- import pytz
23
  from PIL import Image
24
  from datetime import datetime
25
- import matplotlib.pyplot as plt
26
  from geopy.exc import GeocoderTimedOut
27
  from geopy.geocoders import Nominatim
28
- import warnings
29
- warnings.filterwarnings('ignore')
30
  import folium
31
  from folium import plugins
32
  import streamlit as st
33
  import streamlit_folium as st_folium
34
  from data import flight_data
35
- from huggingface_hub import InferenceApi, login, InferenceClient
36
  import branca.colormap as cm
37
- from functools import lru_cache
 
 
 
 
38
  import time
39
 
40
  # Cache the airport data to avoid reloading it every time
@@ -125,7 +125,6 @@ def query_llm(prompt):
125
  def create_flight_embeddings(geo_df):
126
  """Create embeddings for flight data to enable semantic search"""
127
  try:
128
- from sentence_transformers import SentenceTransformer
129
  model = SentenceTransformer('all-MiniLM-L6-v2')
130
 
131
  # Create text representations of flight data
@@ -146,14 +145,12 @@ def create_flight_embeddings(geo_df):
146
  def find_similar_flights(identifier, geo_df, embeddings, flight_texts, threshold=0.7):
147
  """Find similar flights using semantic search"""
148
  try:
149
- from sentence_transformers import SentenceTransformer
150
  model = SentenceTransformer('all-MiniLM-L6-v2')
151
 
152
  # Create query embedding
153
  query_embedding = model.encode([identifier])
154
 
155
  # Calculate similarities
156
- from sklearn.metrics.pairwise import cosine_similarity
157
  similarities = cosine_similarity(query_embedding, embeddings)[0]
158
 
159
  # Find similar flights
@@ -221,7 +218,6 @@ def query_flight_data(geo_df, question):
221
  # If still no match, try fuzzy matching
222
  if flight_data is None or flight_data.empty:
223
  try:
224
- from difflib import get_close_matches
225
  all_callsigns = geo_df['callsign'].fillna('').str.upper().unique()
226
  close_matches = get_close_matches(identifier, all_callsigns, n=1, cutoff=0.8)
227
  if close_matches:
 
16
  import requests
17
  import json
18
  import pandas as pd
 
19
  import geopandas as gpd
20
  import tzlocal
21
+ import pytz
22
  from PIL import Image
23
  from datetime import datetime
 
24
  from geopy.exc import GeocoderTimedOut
25
  from geopy.geocoders import Nominatim
 
 
26
  import folium
27
  from folium import plugins
28
  import streamlit as st
29
  import streamlit_folium as st_folium
30
  from data import flight_data
31
+ from huggingface_hub import InferenceClient
32
  import branca.colormap as cm
33
+ from sentence_transformers import SentenceTransformer
34
+ from sklearn.metrics.pairwise import cosine_similarity
35
+ from difflib import get_close_matches
36
+ import warnings
37
+ warnings.filterwarnings('ignore')
38
  import time
39
 
40
  # Cache the airport data to avoid reloading it every time
 
125
  def create_flight_embeddings(geo_df):
126
  """Create embeddings for flight data to enable semantic search"""
127
  try:
 
128
  model = SentenceTransformer('all-MiniLM-L6-v2')
129
 
130
  # Create text representations of flight data
 
145
  def find_similar_flights(identifier, geo_df, embeddings, flight_texts, threshold=0.7):
146
  """Find similar flights using semantic search"""
147
  try:
 
148
  model = SentenceTransformer('all-MiniLM-L6-v2')
149
 
150
  # Create query embedding
151
  query_embedding = model.encode([identifier])
152
 
153
  # Calculate similarities
 
154
  similarities = cosine_similarity(query_embedding, embeddings)[0]
155
 
156
  # Find similar flights
 
218
  # If still no match, try fuzzy matching
219
  if flight_data is None or flight_data.empty:
220
  try:
 
221
  all_callsigns = geo_df['callsign'].fillna('').str.upper().unique()
222
  close_matches = get_close_matches(identifier, all_callsigns, n=1, cutoff=0.8)
223
  if close_matches: