Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,292 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
'''Copyright 2024 Ashok Kumar
|
2 |
|
3 |
Licensed under the Apache License, Version 2.0 (the "License");
|
@@ -29,11 +318,70 @@ from geopy.exc import GeocoderTimedOut
|
|
29 |
from geopy.geocoders import Nominatim
|
30 |
import warnings
|
31 |
warnings.filterwarnings('ignore')
|
32 |
-
|
33 |
-
|
34 |
import streamlit as st
|
|
|
35 |
from data import flight_data
|
36 |
from huggingface_hub import InferenceApi, login, InferenceClient
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
|
39 |
hf_token = os.getenv("HF_TOKEN")
|
@@ -41,62 +389,123 @@ if hf_token is None:
|
|
41 |
raise ValueError("Hugging Face token not found. Please set the HF_TOKEN environment variable.")
|
42 |
login(hf_token)
|
43 |
|
44 |
-
|
45 |
-
|
46 |
headers = {"Authorization": f"Bearer {hf_token}"}
|
47 |
|
48 |
-
def
|
49 |
-
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
def query_flight_data(geo_df, question):
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
"geo_altitude": geo_df["geo_altitude"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
|
70 |
-
"squawk": geo_df["squawk"].astype(str).replace({np.nan: None, np.inf: '0'}).iloc[:100].tolist(), # Assuming squawk can be None
|
71 |
-
"spi": geo_df["spi"].astype(str).iloc[:100].tolist(), # Assuming spi is boolean or categorical
|
72 |
-
"position_source": geo_df["position_source"].astype(str).iloc[:100].tolist(), # Assuming position_source is categorical
|
73 |
-
"time": geo_df["time"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
|
74 |
-
"geometry": geo_df["geometry"].astype(str).replace({np.nan: None, np.inf: '0'}).iloc[:100].tolist() # Assuming geometry can be None
|
75 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
|
|
77 |
|
78 |
-
|
79 |
-
|
80 |
-
"inputs": {
|
81 |
-
"query": question,
|
82 |
-
"table": table_data,
|
83 |
-
}
|
84 |
-
}
|
85 |
|
86 |
-
|
87 |
-
response = query(payload)
|
88 |
|
89 |
-
#
|
90 |
-
|
91 |
-
|
92 |
-
|
|
|
93 |
else:
|
94 |
-
|
95 |
-
|
|
|
|
|
|
|
96 |
|
97 |
def flight_tracking(flight_view_level, country, local_time_zone, flight_info, airport, color):
|
98 |
-
|
99 |
-
loc =
|
|
|
|
|
|
|
|
|
100 |
loc_box = loc[1]
|
101 |
extend_left =+12*flight_view_level
|
102 |
extend_right =+10*flight_view_level
|
@@ -105,76 +514,215 @@ def flight_tracking(flight_view_level, country, local_time_zone, flight_info, ai
|
|
105 |
lat_min, lat_max = (loc_box[0] - extend_left), loc_box[0]+extend_right
|
106 |
lon_min, lon_max = (loc_box[1] - extend_bottom), loc_box[1]+extend_top
|
107 |
|
108 |
-
tile_zoom = 8 # zoom of the map loaded by contextily
|
109 |
-
figsize = (15, 15)
|
110 |
columns = ["icao24","callsign","origin_country","time_position","last_contact","longitude","latitude",
|
111 |
"baro_altitude","on_ground","velocity","true_track","vertical_rate","sensors","geo_altitude",
|
112 |
"squawk","spi","position_source",]
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
airport_df = pd.read_csv(data_url, header=None, names=column_names)
|
117 |
airport_locations = airport_df[["Name", "City", "Country", "IATA/FAA", "Latitude", "Longitude"]]
|
118 |
airport_country_loc = airport_locations[airport_locations['Country'] == str(loc)]
|
119 |
-
airport_country_loc = airport_country_loc[(airport_country_loc['Country'] == str(loc)) &
|
120 |
-
|
121 |
-
|
|
|
|
|
|
|
122 |
def get_traffic_gdf():
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
state_df,
|
142 |
geometry=gpd.points_from_xy(state_df.longitude, state_df.latitude),
|
143 |
-
crs=
|
144 |
)
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
|
|
|
|
|
|
|
|
158 |
|
|
|
159 |
geo_df = get_traffic_gdf()
|
160 |
-
if
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
st.set_page_config(
|
179 |
layout="wide"
|
180 |
)
|
|
|
1 |
+
# '''Copyright 2024 Ashok Kumar
|
2 |
+
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.'''
|
14 |
+
|
15 |
+
# import os
|
16 |
+
# import requests
|
17 |
+
# import json
|
18 |
+
# import pandas as pd
|
19 |
+
# import numpy as np
|
20 |
+
# import requests
|
21 |
+
# import geopandas as gpd
|
22 |
+
# import contextily as ctx
|
23 |
+
# import tzlocal
|
24 |
+
# import pytz
|
25 |
+
# from PIL import Image
|
26 |
+
# from datetime import datetime
|
27 |
+
# import matplotlib.pyplot as plt
|
28 |
+
# from geopy.exc import GeocoderTimedOut
|
29 |
+
# from geopy.geocoders import Nominatim
|
30 |
+
# import warnings
|
31 |
+
# warnings.filterwarnings('ignore')
|
32 |
+
# from plotly.graph_objs import Marker
|
33 |
+
# import plotly.express as px
|
34 |
+
# import streamlit as st
|
35 |
+
# from data import flight_data
|
36 |
+
# from huggingface_hub import InferenceApi, login, InferenceClient
|
37 |
+
|
38 |
+
|
39 |
+
# hf_token = os.getenv("HF_TOKEN")
|
40 |
+
# if hf_token is None:
|
41 |
+
# raise ValueError("Hugging Face token not found. Please set the HF_TOKEN environment variable.")
|
42 |
+
# login(hf_token)
|
43 |
+
|
44 |
+
|
45 |
+
# API_URL = "https://api-inference.huggingface.co/models/google/tapas-base-finetuned-wtq"
|
46 |
+
# headers = {"Authorization": f"Bearer {hf_token}"}
|
47 |
+
|
48 |
+
# def query(payload):
|
49 |
+
# response = requests.post(API_URL, headers=headers, json=payload)
|
50 |
+
# return response.json()
|
51 |
+
|
52 |
+
# def query_flight_data(geo_df, question):
|
53 |
+
|
54 |
+
|
55 |
+
# table_data = {
|
56 |
+
# "icao24": geo_df["icao24"].astype(str).iloc[:100].tolist(),
|
57 |
+
# "callsign": geo_df["callsign"].astype(str).replace({np.nan: None, np.inf: '0'}).iloc[:100].tolist(),
|
58 |
+
# "origin_country": geo_df["origin_country"].astype(str).replace({np.nan: None, np.inf: '0'}).iloc[:100].tolist(),
|
59 |
+
# "time_position": geo_df["time_position"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
|
60 |
+
# "last_contact": geo_df["last_contact"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
|
61 |
+
# "longitude": geo_df["longitude"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
|
62 |
+
# "latitude": geo_df["latitude"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
|
63 |
+
# "baro_altitude": geo_df["baro_altitude"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
|
64 |
+
# "on_ground": geo_df["on_ground"].astype(str).iloc[:100].tolist(), # Assuming on_ground is boolean or categorical
|
65 |
+
# "velocity": geo_df["velocity"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
|
66 |
+
# "true_track": geo_df["true_track"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
|
67 |
+
# "vertical_rate": geo_df["vertical_rate"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
|
68 |
+
# "sensors": geo_df["sensors"].astype(str).replace({np.nan: None, np.inf: '0'}).iloc[:100].tolist(), # Assuming sensors can be None
|
69 |
+
# "geo_altitude": geo_df["geo_altitude"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
|
70 |
+
# "squawk": geo_df["squawk"].astype(str).replace({np.nan: None, np.inf: '0'}).iloc[:100].tolist(), # Assuming squawk can be None
|
71 |
+
# "spi": geo_df["spi"].astype(str).iloc[:100].tolist(), # Assuming spi is boolean or categorical
|
72 |
+
# "position_source": geo_df["position_source"].astype(str).iloc[:100].tolist(), # Assuming position_source is categorical
|
73 |
+
# "time": geo_df["time"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
|
74 |
+
# "geometry": geo_df["geometry"].astype(str).replace({np.nan: None, np.inf: '0'}).iloc[:100].tolist() # Assuming geometry can be None
|
75 |
+
# }
|
76 |
+
|
77 |
+
|
78 |
+
# # Construct the payload
|
79 |
+
# payload = {
|
80 |
+
# "inputs": {
|
81 |
+
# "query": question,
|
82 |
+
# "table": table_data,
|
83 |
+
# }
|
84 |
+
# }
|
85 |
+
|
86 |
+
# # Get the model response
|
87 |
+
# response = query(payload)
|
88 |
+
|
89 |
+
# # Check if 'answer' is in response and return it as a sentence
|
90 |
+
# if 'answer' in response:
|
91 |
+
# answer = response['answer']
|
92 |
+
# return f"The answer to your question '{question}': :orange[{answer}]"
|
93 |
+
# else:
|
94 |
+
# return "The model could not find an answer to your question."
|
95 |
+
|
96 |
+
|
97 |
+
# def flight_tracking(flight_view_level, country, local_time_zone, flight_info, airport, color):
|
98 |
+
# geolocator = Nominatim(user_agent="flight_tracker")
|
99 |
+
# loc = geolocator.geocode(country)
|
100 |
+
# loc_box = loc[1]
|
101 |
+
# extend_left =+12*flight_view_level
|
102 |
+
# extend_right =+10*flight_view_level
|
103 |
+
# extend_top =+10*flight_view_level
|
104 |
+
# extend_bottom =+ 18*flight_view_level
|
105 |
+
# lat_min, lat_max = (loc_box[0] - extend_left), loc_box[0]+extend_right
|
106 |
+
# lon_min, lon_max = (loc_box[1] - extend_bottom), loc_box[1]+extend_top
|
107 |
+
|
108 |
+
# tile_zoom = 8 # zoom of the map loaded by contextily
|
109 |
+
# figsize = (15, 15)
|
110 |
+
# columns = ["icao24","callsign","origin_country","time_position","last_contact","longitude","latitude",
|
111 |
+
# "baro_altitude","on_ground","velocity","true_track","vertical_rate","sensors","geo_altitude",
|
112 |
+
# "squawk","spi","position_source",]
|
113 |
+
# data_url = "https://raw.githubusercontent.com/ashok2216-A/ashok_airport-data/main/data/airports.dat"
|
114 |
+
# column_names = ["Airport ID", "Name", "City", "Country", "IATA/FAA", "ICAO", "Latitude", "Longitude",
|
115 |
+
# "Altitude", "Timezone", "DST", "Tz database time zone", "Type", "Source"]
|
116 |
+
# airport_df = pd.read_csv(data_url, header=None, names=column_names)
|
117 |
+
# airport_locations = airport_df[["Name", "City", "Country", "IATA/FAA", "Latitude", "Longitude"]]
|
118 |
+
# airport_country_loc = airport_locations[airport_locations['Country'] == str(loc)]
|
119 |
+
# airport_country_loc = airport_country_loc[(airport_country_loc['Country'] == str(loc)) & (airport_country_loc['Latitude'] >= lat_min) &
|
120 |
+
# (airport_country_loc['Latitude'] <= lat_max) & (airport_country_loc['Longitude'] >= lon_min) &
|
121 |
+
# (airport_country_loc['Longitude'] <= lon_max)]
|
122 |
+
# def get_traffic_gdf():
|
123 |
+
# url_data = (
|
124 |
+
# f"https://@opensky-network.org/api/states/all?"
|
125 |
+
# f"lamin={str(lat_min)}"
|
126 |
+
# f"&lomin={str(lon_min)}"
|
127 |
+
# f"&lamax={str(lat_max)}"
|
128 |
+
# f"&lomax={str(lon_max)}")
|
129 |
+
# json_dict = requests.get(url_data).json()
|
130 |
+
|
131 |
+
# unix_timestamp = int(json_dict["time"])
|
132 |
+
# local_timezone = pytz.timezone(local_time_zone) # get pytz timezone
|
133 |
+
# local_time = datetime.fromtimestamp(unix_timestamp, local_timezone).strftime('%Y-%m-%d %H:%M:%S')
|
134 |
+
# time = []
|
135 |
+
# for i in range(len(json_dict['states'])):
|
136 |
+
# time.append(local_time)
|
137 |
+
# df_time = pd.DataFrame(time,columns=['time'])
|
138 |
+
# state_df = pd.DataFrame(json_dict["states"],columns=columns)
|
139 |
+
# state_df['time'] = df_time
|
140 |
+
# gdf = gpd.GeoDataFrame(
|
141 |
+
# state_df,
|
142 |
+
# geometry=gpd.points_from_xy(state_df.longitude, state_df.latitude),
|
143 |
+
# crs={"init": "epsg:4326"}, # WGS84
|
144 |
+
# )
|
145 |
+
# # banner_image = Image.open('banner.png')
|
146 |
+
# # st.image(banner_image, width=300)
|
147 |
+
# st.title("Live Flight Tracker")
|
148 |
+
# st.subheader('Flight Details', divider='rainbow')
|
149 |
+
# st.write('Location: {0}'.format(loc))
|
150 |
+
# st.write('Current Local Time: {0}-{1}:'.format(local_time, local_time_zone))
|
151 |
+
# st.write("Minimum_latitude is {0} and Maximum_latitude is {1}".format(lat_min, lat_max))
|
152 |
+
# st.write("Minimum_longitude is {0} and Maximum_longitude is {1}".format(lon_min, lon_max))
|
153 |
+
# st.write('Number of Visible Flights: {}'.format(len(json_dict['states'])))
|
154 |
+
# st.write('Plotting the flight: {}'.format(flight_info))
|
155 |
+
# st.subheader('Map Visualization', divider='rainbow')
|
156 |
+
# st.write('****Click ":orange[Update Map]" Button to Refresh the Map****')
|
157 |
+
# return gdf
|
158 |
+
|
159 |
+
# geo_df = get_traffic_gdf()
|
160 |
+
# if airport == 0:
|
161 |
+
# fig = px.scatter_mapbox(geo_df, lat="latitude", lon="longitude",color=flight_info,
|
162 |
+
# color_continuous_scale=color, zoom=4,width=1200, height=600,opacity=1,
|
163 |
+
# hover_name ='origin_country',hover_data=['callsign', 'baro_altitude',
|
164 |
+
# 'on_ground', 'velocity', 'true_track', 'vertical_rate', 'geo_altitude'], template='plotly_dark')
|
165 |
+
# elif airport == 1:
|
166 |
+
# fig = px.scatter_mapbox(geo_df, lat="latitude", lon="longitude",color=flight_info,
|
167 |
+
# color_continuous_scale=color, zoom=4,width=1200, height=600,opacity=1,
|
168 |
+
# hover_name ='origin_country',hover_data=['callsign', 'baro_altitude',
|
169 |
+
# 'on_ground', 'velocity', 'true_track', 'vertical_rate', 'geo_altitude'], template='plotly_dark')
|
170 |
+
# fig.add_trace(px.scatter_mapbox(airport_country_loc, lat="Latitude", lon="Longitude",
|
171 |
+
# hover_name ='Name', hover_data=["City", "Country", "IATA/FAA"]).data[0])
|
172 |
+
# else: None
|
173 |
+
# fig.update_layout(mapbox_style="carto-darkmatter")
|
174 |
+
# fig.update_layout(margin={"r": 0, "t": 0, "l": 0, "b": 0})
|
175 |
+
# # out = fig.show())
|
176 |
+
# out = st.plotly_chart(fig, theme=None)
|
177 |
+
# return out
|
178 |
+
# st.set_page_config(
|
179 |
+
# layout="wide"
|
180 |
+
# )
|
181 |
+
# image = Image.open('logo.png')
|
182 |
+
# add_selectbox = st.sidebar.image(
|
183 |
+
# image, width=150
|
184 |
+
# )
|
185 |
+
# add_selectbox = st.sidebar.subheader(
|
186 |
+
# "Configure Map",divider='rainbow'
|
187 |
+
# )
|
188 |
+
# with st.sidebar:
|
189 |
+
# Refresh = st.button('Update Map', key=1)
|
190 |
+
# on = st.toggle('View Airports')
|
191 |
+
# if on:
|
192 |
+
# air_port = 1
|
193 |
+
# st.write(':rainbow[Nice Work Buddy!]')
|
194 |
+
# st.write('Now Airports are Visible')
|
195 |
+
# else:
|
196 |
+
# air_port=0
|
197 |
+
# view = st.slider('Increase Flight Visibility',1,6,2)
|
198 |
+
# st.write("You Selected:", view)
|
199 |
+
# cou = st.text_input('Type Country Name', 'north america')
|
200 |
+
# st.write('The current Country name is', cou)
|
201 |
+
# time = st.text_input('Type Time Zone Name (Ex: America/Toronto, Europe/Berlin)', 'Asia/Kolkata')
|
202 |
+
# st.write('The current Time Zone is', time)
|
203 |
+
# info = st.selectbox(
|
204 |
+
# 'Select Flight Information',
|
205 |
+
# ('baro_altitude',
|
206 |
+
# 'on_ground', 'velocity',
|
207 |
+
# 'geo_altitude'))
|
208 |
+
# st.write('Plotting the data of Flight:', info)
|
209 |
+
# clr = st.radio('Pick A Color for Scatter Plot',["rainbow","ice","hot"])
|
210 |
+
# if clr == "rainbow":
|
211 |
+
# st.write('The current color is', "****:rainbow[Rainbow]****")
|
212 |
+
# elif clr == 'ice':
|
213 |
+
# st.write('The current color is', "****:blue[Ice]****")
|
214 |
+
# elif clr == 'hot':
|
215 |
+
# st.write('The current color is', "****:red[Hot]****")
|
216 |
+
# else: None
|
217 |
+
# # with st.spinner('Wait!, We Requesting API Data...'):
|
218 |
+
# # try:
|
219 |
+
# flight_tracking(flight_view_level=view, country=cou,flight_info=info,
|
220 |
+
# local_time_zone=time, airport=air_port, color=clr)
|
221 |
+
# st.subheader('Ask your Questions!', divider='rainbow')
|
222 |
+
# st.write("Google's TAPAS base LLM model 🤖")
|
223 |
+
# geo_df = flight_data(flight_view_level = view, country= cou, flight_info=info, local_time_zone=time, airport=1)
|
224 |
+
# question = st.text_input('Type your questions here', "What is the squawk code for SWR9XD?")
|
225 |
+
# result = query_flight_data(geo_df, question)
|
226 |
+
# st.markdown(result)
|
227 |
+
# # except TypeError:
|
228 |
+
# # st.error(':red[Error: ] Please Re-run this page.', icon="🚨")
|
229 |
+
# # st.button('Re-run', type="primary")
|
230 |
+
# # st.snow()
|
231 |
+
|
232 |
+
|
233 |
+
|
234 |
+
# # import streamlit as st
|
235 |
+
# # from huggingface_hub import InferenceClient
|
236 |
+
# # import os
|
237 |
+
|
238 |
+
# # hf_token = os.getenv("HF_TOKEN")
|
239 |
+
# # # Set up the Hugging Face Inference Client
|
240 |
+
# # client = InferenceClient(
|
241 |
+
# # provider="together", # Replace with the correct provider if needed
|
242 |
+
# # api_key= hf_token # Replace with your Hugging Face API key
|
243 |
+
# # )
|
244 |
+
|
245 |
+
# # # Streamlit app title
|
246 |
+
# # st.title("🤖 Deepseek R1 Chatbot")
|
247 |
+
# # st.write("Chat with the Deepseek R1 model powered by Hugging Face Inference API.")
|
248 |
+
|
249 |
+
# # # Initialize session state to store chat history
|
250 |
+
# # if "messages" not in st.session_state:
|
251 |
+
# # st.session_state.messages = []
|
252 |
+
|
253 |
+
# # # Display chat history
|
254 |
+
# # for message in st.session_state.messages:
|
255 |
+
# # with st.chat_message(message["role"]):
|
256 |
+
# # st.markdown(message["content"])
|
257 |
+
|
258 |
+
# # # User input
|
259 |
+
# # if prompt := st.chat_input("What would you like to ask?"):
|
260 |
+
# # # Add user message to chat history
|
261 |
+
# # st.session_state.messages.append({"role": "user", "content": prompt})
|
262 |
+
# # with st.chat_message("user"):
|
263 |
+
# # st.markdown(prompt)
|
264 |
+
|
265 |
+
# # # Generate response from Deepseek R1 model
|
266 |
+
# # with st.spinner("Thinking..."):
|
267 |
+
# # try:
|
268 |
+
# # # Prepare the messages for the model
|
269 |
+
# # messages = [{"role": m["role"], "content": m["content"]} for m in st.session_state.messages]
|
270 |
+
|
271 |
+
# # # Call the Hugging Face Inference API
|
272 |
+
# # completion = client.chat.completions.create(
|
273 |
+
# # model="deepseek-ai/DeepSeek-R1", # Replace with the correct model name
|
274 |
+
# # messages=messages,
|
275 |
+
# # max_tokens=500
|
276 |
+
# # )
|
277 |
+
|
278 |
+
# # # Extract the model's response
|
279 |
+
# # response = completion.choices[0].message.content
|
280 |
+
|
281 |
+
# # # Add model's response to chat history
|
282 |
+
# # st.session_state.messages.append({"role": "assistant", "content": response})
|
283 |
+
# # with st.chat_message("assistant"):
|
284 |
+
# # st.markdown(response)
|
285 |
+
|
286 |
+
# # except Exception as e:
|
287 |
+
# # st.error(f"An error occurred: {e}")
|
288 |
+
|
289 |
+
|
290 |
'''Copyright 2024 Ashok Kumar
|
291 |
|
292 |
Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
318 |
from geopy.geocoders import Nominatim
|
319 |
import warnings
|
320 |
warnings.filterwarnings('ignore')
|
321 |
+
import folium
|
322 |
+
from folium import plugins
|
323 |
import streamlit as st
|
324 |
+
import streamlit_folium as st_folium
|
325 |
from data import flight_data
|
326 |
from huggingface_hub import InferenceApi, login, InferenceClient
|
327 |
+
import branca.colormap as cm
|
328 |
+
from functools import lru_cache
|
329 |
+
import time
|
330 |
+
|
331 |
+
# Cache the airport data to avoid reloading it every time
|
332 |
+
@st.cache_data(ttl=3600) # Cache for 1 hour
|
333 |
+
def load_airport_data():
|
334 |
+
data_url = "https://raw.githubusercontent.com/ashok2216-A/ashok_airport-data/main/data/airports.dat"
|
335 |
+
column_names = ["Airport ID", "Name", "City", "Country", "IATA/FAA", "ICAO", "Latitude", "Longitude",
|
336 |
+
"Altitude", "Timezone", "DST", "Tz database time zone", "Type", "Source"]
|
337 |
+
return pd.read_csv(data_url, header=None, names=column_names)
|
338 |
+
|
339 |
+
# Cache geocoding results
|
340 |
+
@st.cache_data(ttl=3600)
|
341 |
+
def get_location(country):
|
342 |
+
geolocator = Nominatim(user_agent="flight_tracker")
|
343 |
+
return geolocator.geocode(country)
|
344 |
+
|
345 |
+
# Cache flight data fetching
|
346 |
+
@st.cache_data(ttl=60) # Cache for 1 minute
|
347 |
+
def fetch_flight_data(lat_min, lat_max, lon_min, lon_max):
|
348 |
+
try:
|
349 |
+
# OpenSky Network API endpoint
|
350 |
+
url = "https://opensky-network.org/api/states/all"
|
351 |
+
|
352 |
+
# Parameters for the request
|
353 |
+
params = {
|
354 |
+
'lamin': lat_min,
|
355 |
+
'lamax': lat_max,
|
356 |
+
'lomin': lon_min,
|
357 |
+
'lomax': lon_max
|
358 |
+
}
|
359 |
+
|
360 |
+
# Make the request with a timeout
|
361 |
+
response = requests.get(url, params=params, timeout=10)
|
362 |
+
|
363 |
+
# Check if the request was successful
|
364 |
+
response.raise_for_status()
|
365 |
+
|
366 |
+
# Parse the JSON response
|
367 |
+
data = response.json()
|
368 |
+
|
369 |
+
# Check if we got valid data
|
370 |
+
if not data or 'states' not in data:
|
371 |
+
st.warning("No flight data available for the selected area.")
|
372 |
+
return {'states': [], 'time': 0}
|
373 |
+
|
374 |
+
return data
|
375 |
+
|
376 |
+
except requests.exceptions.RequestException as e:
|
377 |
+
st.error(f"Error fetching flight data: {str(e)}")
|
378 |
+
return {'states': [], 'time': 0}
|
379 |
+
except json.JSONDecodeError as e:
|
380 |
+
st.error(f"Error parsing flight data: {str(e)}")
|
381 |
+
return {'states': [], 'time': 0}
|
382 |
+
except Exception as e:
|
383 |
+
st.error(f"Unexpected error: {str(e)}")
|
384 |
+
return {'states': [], 'time': 0}
|
385 |
|
386 |
|
387 |
hf_token = os.getenv("HF_TOKEN")
|
|
|
389 |
raise ValueError("Hugging Face token not found. Please set the HF_TOKEN environment variable.")
|
390 |
login(hf_token)
|
391 |
|
392 |
+
# Hugging Face model configuration
|
393 |
+
HF_API_URL = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.2"
|
394 |
headers = {"Authorization": f"Bearer {hf_token}"}
|
395 |
|
396 |
+
def query_llm(prompt):
|
397 |
+
try:
|
398 |
+
payload = {
|
399 |
+
"inputs": prompt,
|
400 |
+
"parameters": {
|
401 |
+
"max_new_tokens": 250,
|
402 |
+
"temperature": 0.1,
|
403 |
+
"top_p": 0.95,
|
404 |
+
"return_full_text": False
|
405 |
+
}
|
406 |
+
}
|
407 |
+
|
408 |
+
response = requests.post(HF_API_URL, headers=headers, json=payload)
|
409 |
+
response.raise_for_status()
|
410 |
+
return response.json()[0]['generated_text']
|
411 |
+
except Exception as e:
|
412 |
+
st.error(f"Error querying language model: {str(e)}")
|
413 |
+
return None
|
414 |
|
415 |
def query_flight_data(geo_df, question):
|
416 |
+
# Preprocess the question to extract key information
|
417 |
+
question = question.lower().strip()
|
418 |
+
|
419 |
+
# Common flight information queries and their corresponding columns
|
420 |
+
query_mappings = {
|
421 |
+
'callsign': ['callsign'],
|
422 |
+
'altitude': ['baro_altitude', 'geo_altitude'],
|
423 |
+
'speed': ['velocity'],
|
424 |
+
'direction': ['true_track'],
|
425 |
+
'country': ['origin_country'],
|
426 |
+
'squawk': ['squawk'],
|
427 |
+
'icao': ['icao24'],
|
428 |
+
'vertical': ['vertical_rate'],
|
429 |
+
'ground': ['on_ground'],
|
430 |
+
'position': ['latitude', 'longitude'],
|
431 |
+
'time': ['time_position', 'last_contact']
|
|
|
|
|
|
|
|
|
|
|
|
|
432 |
}
|
433 |
+
|
434 |
+
# Extract the identifier (usually callsign or icao) from the question
|
435 |
+
identifier = None
|
436 |
+
if 'for' in question:
|
437 |
+
identifier = question.split('for')[-1].strip()
|
438 |
+
elif 'of' in question:
|
439 |
+
identifier = question.split('of')[-1].strip()
|
440 |
+
elif 'about' in question:
|
441 |
+
identifier = question.split('about')[-1].strip()
|
442 |
+
|
443 |
+
if not identifier:
|
444 |
+
return "Please specify a flight identifier (callsign or ICAO code) in your question."
|
445 |
+
|
446 |
+
# Try to find the flight by callsign or icao
|
447 |
+
flight_data = None
|
448 |
+
if identifier in geo_df['callsign'].values:
|
449 |
+
flight_data = geo_df[geo_df['callsign'] == identifier]
|
450 |
+
elif identifier in geo_df['icao24'].values:
|
451 |
+
flight_data = geo_df[geo_df['icao24'] == identifier]
|
452 |
+
|
453 |
+
if flight_data is None or flight_data.empty:
|
454 |
+
return f"Could not find flight information for {identifier}. Please check the flight identifier and try again."
|
455 |
+
|
456 |
+
# Prepare flight data for the LLM
|
457 |
+
flight_info = {}
|
458 |
+
for col in flight_data.columns:
|
459 |
+
if col in flight_data.columns:
|
460 |
+
value = flight_data[col].iloc[0]
|
461 |
+
if pd.notna(value):
|
462 |
+
if col == 'baro_altitude' or col == 'geo_altitude':
|
463 |
+
flight_info[col] = f"{value} meters"
|
464 |
+
elif col == 'velocity':
|
465 |
+
flight_info[col] = f"{value} m/s"
|
466 |
+
elif col == 'true_track':
|
467 |
+
flight_info[col] = f"{value} degrees"
|
468 |
+
elif col == 'vertical_rate':
|
469 |
+
flight_info[col] = f"{value} m/s"
|
470 |
+
elif col == 'latitude':
|
471 |
+
flight_info[col] = f"{value}° N"
|
472 |
+
elif col == 'longitude':
|
473 |
+
flight_info[col] = f"{value}° E"
|
474 |
+
else:
|
475 |
+
flight_info[col] = str(value)
|
476 |
+
|
477 |
+
if not flight_info:
|
478 |
+
return f"No information available for flight {identifier}."
|
479 |
+
|
480 |
+
# Create a prompt for the LLM
|
481 |
+
prompt = f"""You are a flight information assistant. Answer the following question about flight {identifier} using the provided flight data.
|
482 |
|
483 |
+
Question: {question}
|
484 |
|
485 |
+
Flight Data:
|
486 |
+
{json.dumps(flight_info, indent=2)}
|
|
|
|
|
|
|
|
|
|
|
487 |
|
488 |
+
Please provide a clear and concise answer focusing on the specific information requested in the question. If the question asks for information not available in the data, say so clearly."""
|
|
|
489 |
|
490 |
+
# Get response from LLM
|
491 |
+
llm_response = query_llm(prompt)
|
492 |
+
|
493 |
+
if llm_response:
|
494 |
+
return llm_response
|
495 |
else:
|
496 |
+
# Fallback to direct data response if LLM fails
|
497 |
+
response = f"Flight Information for {identifier}:\n"
|
498 |
+
for key, value in flight_info.items():
|
499 |
+
response += f"- {key.replace('_', ' ').title()}: {value}\n"
|
500 |
+
return response
|
501 |
|
502 |
def flight_tracking(flight_view_level, country, local_time_zone, flight_info, airport, color):
|
503 |
+
# Get cached location data
|
504 |
+
loc = get_location(country)
|
505 |
+
if not loc:
|
506 |
+
st.error("Could not find location. Please try a different country name.")
|
507 |
+
return
|
508 |
+
|
509 |
loc_box = loc[1]
|
510 |
extend_left =+12*flight_view_level
|
511 |
extend_right =+10*flight_view_level
|
|
|
514 |
lat_min, lat_max = (loc_box[0] - extend_left), loc_box[0]+extend_right
|
515 |
lon_min, lon_max = (loc_box[1] - extend_bottom), loc_box[1]+extend_top
|
516 |
|
|
|
|
|
517 |
columns = ["icao24","callsign","origin_country","time_position","last_contact","longitude","latitude",
|
518 |
"baro_altitude","on_ground","velocity","true_track","vertical_rate","sensors","geo_altitude",
|
519 |
"squawk","spi","position_source",]
|
520 |
+
|
521 |
+
# Get cached airport data
|
522 |
+
airport_df = load_airport_data()
|
|
|
523 |
airport_locations = airport_df[["Name", "City", "Country", "IATA/FAA", "Latitude", "Longitude"]]
|
524 |
airport_country_loc = airport_locations[airport_locations['Country'] == str(loc)]
|
525 |
+
airport_country_loc = airport_country_loc[(airport_country_loc['Country'] == str(loc)) &
|
526 |
+
(airport_country_loc['Latitude'] >= lat_min) &
|
527 |
+
(airport_country_loc['Latitude'] <= lat_max) &
|
528 |
+
(airport_country_loc['Longitude'] >= lon_min) &
|
529 |
+
(airport_country_loc['Longitude'] <= lon_max)]
|
530 |
+
|
531 |
def get_traffic_gdf():
|
532 |
+
# Get cached flight data
|
533 |
+
json_dict = fetch_flight_data(lat_min, lat_max, lon_min, lon_max)
|
534 |
+
|
535 |
+
if not json_dict or not json_dict.get('states'):
|
536 |
+
st.warning("No flight data available for the selected area.")
|
537 |
+
return None
|
538 |
+
|
539 |
+
try:
|
540 |
+
unix_timestamp = int(json_dict["time"])
|
541 |
+
local_timezone = pytz.timezone(local_time_zone)
|
542 |
+
local_time = datetime.fromtimestamp(unix_timestamp, local_timezone).strftime('%Y-%m-%d %H:%M:%S')
|
543 |
+
|
544 |
+
# Optimize DataFrame creation
|
545 |
+
state_df = pd.DataFrame(json_dict["states"], columns=columns)
|
546 |
+
state_df['time'] = local_time
|
547 |
+
|
548 |
+
# Create GeoDataFrame more efficiently
|
549 |
+
gdf = gpd.GeoDataFrame(
|
550 |
state_df,
|
551 |
geometry=gpd.points_from_xy(state_df.longitude, state_df.latitude),
|
552 |
+
crs="EPSG:4326"
|
553 |
)
|
554 |
+
|
555 |
+
# Display information
|
556 |
+
st.title("Live Flight Tracker")
|
557 |
+
st.subheader('Flight Details', divider='rainbow')
|
558 |
+
st.write('Location: {0}'.format(loc))
|
559 |
+
st.write('Current Local Time: {0}-{1}:'.format(local_time, local_time_zone))
|
560 |
+
st.write("Minimum_latitude is {0} and Maximum_latitude is {1}".format(lat_min, lat_max))
|
561 |
+
st.write("Minimum_longitude is {0} and Maximum_longitude is {1}".format(lon_min, lon_max))
|
562 |
+
st.write('Number of Visible Flights: {}'.format(len(json_dict['states'])))
|
563 |
+
st.write('Plotting the flight: {}'.format(flight_info))
|
564 |
+
st.subheader('Map Visualization', divider='rainbow')
|
565 |
+
st.write('****Click ":orange[Update Map]" Button to Refresh the Map****')
|
566 |
+
return gdf
|
567 |
+
|
568 |
+
except Exception as e:
|
569 |
+
st.error(f"Error processing flight data: {str(e)}")
|
570 |
+
return None
|
571 |
|
572 |
+
# Get traffic data
|
573 |
geo_df = get_traffic_gdf()
|
574 |
+
if geo_df is None:
|
575 |
+
return
|
576 |
+
|
577 |
+
# Create a base map
|
578 |
+
m = folium.Map(
|
579 |
+
location=[loc_box[0], loc_box[1]],
|
580 |
+
zoom_start=6,
|
581 |
+
tiles='CartoDB dark_matter'
|
582 |
+
)
|
583 |
+
|
584 |
+
# Create colormap
|
585 |
+
if color == "rainbow":
|
586 |
+
colormap = cm.LinearColormap(
|
587 |
+
colors=['red', 'yellow', 'green', 'blue', 'purple'],
|
588 |
+
vmin=geo_df[flight_info].min(),
|
589 |
+
vmax=geo_df[flight_info].max()
|
590 |
+
)
|
591 |
+
elif color == "ice":
|
592 |
+
colormap = cm.LinearColormap(
|
593 |
+
colors=['white', 'lightblue', 'blue'],
|
594 |
+
vmin=geo_df[flight_info].min(),
|
595 |
+
vmax=geo_df[flight_info].max()
|
596 |
+
)
|
597 |
+
else: # hot
|
598 |
+
colormap = cm.LinearColormap(
|
599 |
+
colors=['yellow', 'orange', 'red'],
|
600 |
+
vmin=geo_df[flight_info].min(),
|
601 |
+
vmax=geo_df[flight_info].max()
|
602 |
+
)
|
603 |
+
|
604 |
+
# Pre-compute icon HTML template
|
605 |
+
icon_template = """
|
606 |
+
<div style="transform: rotate({rotation_angle}deg);">
|
607 |
+
<svg width="24" height="24" viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg">
|
608 |
+
<path d="M21 16v-2l-8-5V3.5c0-.83-.67-1.5-1.5-1.5S10 2.67 10 3.5V9l-8 5v2l8-2.5V19l-2 1.5V22l3.5-1 3.5 1v-1.5L13 19v-5.5l8 2.5z" fill="{color_hex}"/>
|
609 |
+
</svg>
|
610 |
+
</div>
|
611 |
+
"""
|
612 |
+
|
613 |
+
# Pre-compute tooltip template
|
614 |
+
tooltip_template = """
|
615 |
+
<div style="font-size: 12px; font-family: Arial, sans-serif; max-width: 300px;">
|
616 |
+
<div style="font-weight: bold; font-size: 14px; margin-bottom: 5px; color: #2c3e50;">
|
617 |
+
Flight: {callsign}
|
618 |
+
</div>
|
619 |
+
<div style="display: grid; grid-template-columns: 1fr 1fr; gap: 5px;">
|
620 |
+
{rows}
|
621 |
+
</div>
|
622 |
+
</div>
|
623 |
+
"""
|
624 |
+
|
625 |
+
# Add flight markers
|
626 |
+
for idx, row in geo_df.iterrows():
|
627 |
+
if pd.notna(row['latitude']) and pd.notna(row['longitude']):
|
628 |
+
# Get color based on flight_info value
|
629 |
+
value = row[flight_info] if pd.notna(row[flight_info]) else geo_df[flight_info].min()
|
630 |
+
color_hex = colormap(value)
|
631 |
+
|
632 |
+
# Create custom flight icon with rotation
|
633 |
+
rotation_angle = row['true_track'] if pd.notna(row['true_track']) else 0
|
634 |
+
icon_html = icon_template.format(rotation_angle=rotation_angle, color_hex=color_hex)
|
635 |
+
|
636 |
+
# Create tooltip rows
|
637 |
+
tooltip_rows = []
|
638 |
+
for col in columns:
|
639 |
+
val = row[col] if pd.notna(row[col]) else 'N/A'
|
640 |
+
if col in ['baro_altitude', 'geo_altitude']:
|
641 |
+
val = f"{val} m"
|
642 |
+
elif col == 'velocity':
|
643 |
+
val = f"{val} m/s"
|
644 |
+
elif col == 'true_track':
|
645 |
+
val = f"{val}°"
|
646 |
+
tooltip_rows.append(f'<div style="font-weight: bold;">{col}:</div><div>{val}</div>')
|
647 |
+
|
648 |
+
# Create tooltip
|
649 |
+
tooltip_html = tooltip_template.format(
|
650 |
+
callsign=row['callsign'] if pd.notna(row['callsign']) else 'Unknown',
|
651 |
+
rows='\n'.join(tooltip_rows)
|
652 |
+
)
|
653 |
+
|
654 |
+
# Create popup content
|
655 |
+
popup_content = f"""
|
656 |
+
<div style="font-size: 14px; font-family: Arial, sans-serif; max-width: 300px;">
|
657 |
+
<div style="font-weight: bold; font-size: 16px; margin-bottom: 10px; color: #2c3e50;">
|
658 |
+
Flight: {row['callsign'] if pd.notna(row['callsign']) else 'Unknown'}
|
659 |
+
</div>
|
660 |
+
<div style="display: grid; grid-template-columns: 1fr 1fr; gap: 5px;">
|
661 |
+
<div style="font-weight: bold;">ICAO24:</div>
|
662 |
+
<div>{row['icao24'] if pd.notna(row['icao24']) else 'N/A'}</div>
|
663 |
+
<div style="font-weight: bold;">Origin Country:</div>
|
664 |
+
<div>{row['origin_country'] if pd.notna(row['origin_country']) else 'N/A'}</div>
|
665 |
+
<div style="font-weight: bold;">Time Position:</div>
|
666 |
+
<div>{row['time_position'] if pd.notna(row['time_position']) else 'N/A'}</div>
|
667 |
+
<div style="font-weight: bold;">Last Contact:</div>
|
668 |
+
<div>{row['last_contact'] if pd.notna(row['last_contact']) else 'N/A'}</div>
|
669 |
+
<div style="font-weight: bold;">Baro Altitude:</div>
|
670 |
+
<div>{row['baro_altitude'] if pd.notna(row['baro_altitude']) else 'N/A'} m</div>
|
671 |
+
<div style="font-weight: bold;">Geo Altitude:</div>
|
672 |
+
<div>{row['geo_altitude'] if pd.notna(row['geo_altitude']) else 'N/A'} m</div>
|
673 |
+
<div style="font-weight: bold;">Velocity:</div>
|
674 |
+
<div>{row['velocity'] if pd.notna(row['velocity']) else 'N/A'} m/s</div>
|
675 |
+
<div style="font-weight: bold;">True Track:</div>
|
676 |
+
<div>{row['true_track'] if pd.notna(row['true_track']) else 'N/A'}°</div>
|
677 |
+
<div style="font-weight: bold;">Vertical Rate:</div>
|
678 |
+
<div>{row['vertical_rate'] if pd.notna(row['vertical_rate']) else 'N/A'} m/s</div>
|
679 |
+
<div style="font-weight: bold;">Squawk:</div>
|
680 |
+
<div>{row['squawk'] if pd.notna(row['squawk']) else 'N/A'}</div>
|
681 |
+
<div style="font-weight: bold;">On Ground:</div>
|
682 |
+
<div>{row['on_ground'] if pd.notna(row['on_ground']) else 'N/A'}</div>
|
683 |
+
<div style="font-weight: bold;">SPI:</div>
|
684 |
+
<div>{row['spi'] if pd.notna(row['spi']) else 'N/A'}</div>
|
685 |
+
<div style="font-weight: bold;">Position Source:</div>
|
686 |
+
<div>{row['position_source'] if pd.notna(row['position_source']) else 'N/A'}</div>
|
687 |
+
</div>
|
688 |
+
</div>
|
689 |
+
"""
|
690 |
+
|
691 |
+
# Create custom icon
|
692 |
+
icon = folium.DivIcon(
|
693 |
+
html=icon_html,
|
694 |
+
icon_size=(24, 24),
|
695 |
+
icon_anchor=(12, 12)
|
696 |
+
)
|
697 |
+
|
698 |
+
# Add marker to map
|
699 |
+
folium.Marker(
|
700 |
+
location=[row['latitude'], row['longitude']],
|
701 |
+
icon=icon,
|
702 |
+
popup=folium.Popup(popup_content, max_width=300),
|
703 |
+
tooltip=tooltip_html
|
704 |
+
).add_to(m)
|
705 |
+
|
706 |
+
# Add airports if selected
|
707 |
+
if airport == 1:
|
708 |
+
for idx, row in airport_country_loc.iterrows():
|
709 |
+
folium.Marker(
|
710 |
+
location=[row['Latitude'], row['Longitude']],
|
711 |
+
icon=folium.Icon(icon='plane', prefix='fa', color='blue'),
|
712 |
+
popup=f"<b>{row['Name']}</b><br>IATA: {row['IATA/FAA']}<br>City: {row['City']}",
|
713 |
+
tooltip=f"Airport: {row['Name']}"
|
714 |
+
).add_to(m)
|
715 |
+
|
716 |
+
# Add colormap to the map
|
717 |
+
colormap.add_to(m)
|
718 |
+
|
719 |
+
# Add a layer control
|
720 |
+
folium.LayerControl().add_to(m)
|
721 |
+
|
722 |
+
# Display the map in Streamlit
|
723 |
+
st_folium.folium_static(m, width=1200, height=600)
|
724 |
+
return None
|
725 |
+
|
726 |
st.set_page_config(
|
727 |
layout="wide"
|
728 |
)
|