File size: 5,869 Bytes
e8af220
 
 
 
 
 
f9b0ae0
e8af220
f9b0ae0
 
 
 
 
 
e8af220
f9b0ae0
 
e8af220
f9b0ae0
 
 
 
 
 
 
 
 
e8af220
f9b0ae0
 
 
 
 
e8af220
f9b0ae0
e8af220
f9b0ae0
 
 
 
 
e8af220
 
 
 
f9b0ae0
 
 
e8af220
 
 
 
 
 
f9b0ae0
e8af220
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f9b0ae0
 
 
 
 
 
 
 
 
 
 
 
 
e8af220
 
 
 
 
 
 
 
 
 
 
 
3ba76f6
 
 
 
e8af220
 
 
 
883071c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import requests
from bs4 import BeautifulSoup
import pandas as pd
import gradio as gr
import os
from groq import Groq
import creds  # Ensure creds.py contains `api_key` as `creds.api_key`

# Step 1: Scrape free courses from Analytics Vidhya
def scrape_courses():
    url = "https://courses.analyticsvidhya.com/pages/all-free-courses"
    response = requests.get(url)
    soup = BeautifulSoup(response.content, 'html.parser')
    courses = []

    for course_card in soup.find_all('header', class_='course-card__img-container'):
        img_tag = course_card.find('img', class_='course-card__img')
        
        if img_tag:
            title = img_tag.get('alt')
            image_url = img_tag.get('src')
            
            link_tag = course_card.find_previous('a')
            if link_tag:
                course_link = link_tag.get('href')
                if not course_link.startswith('http'):
                    course_link = 'https://courses.analyticsvidhya.com' + course_link

                courses.append({
                    'title': title,
                    'image_url': image_url,
                    'course_link': course_link
                })

    return pd.DataFrame(courses)

# Initialize course DataFrame
df = scrape_courses()

# Step 2: Initialize the Groq client and set the API key
client = Groq(api_key=creds.api_key)

def search_courses(query):
    try:
        print(f"Searching for: {query}")
        prompt = f"""Given the query: "{query}"
        Rank the following courses based on relevance to the query, prioritizing Analytics Vidhya courses.
        Provide a relevance score (0-1) for each course, returning only those with a score >= 0.5.
        
        Courses:
        {df['title'].to_string(index=False)}
        """

        response = client.chat.completions.create(
            model="mixtral-8x7b-32768",
            messages=[{"role": "system", "content": "You are an AI assistant specialized in course recommendations."},
                      {"role": "user", "content": prompt}],
            temperature=0.2,
            max_tokens=1000
        )

        results = []
        for line in response.choices[0].message.content.split('\n'):
            if line.startswith('Title:'):
                title = line.split('Title:')[1].strip()
            elif line.startswith('Relevance:'):
                relevance = float(line.split('Relevance:')[1].strip())
                if relevance >= 0.5:
                    matching_courses = df[df['title'] == title]
                    if not matching_courses.empty:
                        course = matching_courses.iloc[0]
                        results.append({
                            'title': title,
                            'image_url': course['image_url'],
                            'course_link': course['course_link'],
                            'score': relevance
                        })

        return sorted(results, key=lambda x: x['score'], reverse=True)[:10]  # Return top 10 results

    except Exception as e:
        print(f"An error occurred in search_courses: {str(e)}")
        return []

def gradio_search(query):
    result_list = search_courses(query)
    
    if result_list:
        html_output = '<div class="results-container">'
        for item in result_list:
            course_title = item['title']
            course_image = item['image_url']
            course_link = item['course_link']
            relevance_score = round(item['score'] * 100, 2)
            
            html_output += f'''
            <div class="course-card">
                <img src="{course_image}" alt="{course_title}" class="course-image"/>
                <div class="course-info">
                    <h3>{course_title}</h3>
                    <p>Relevance: {relevance_score}%</p>
                    <a href="{course_link}" target="_blank" class="course-link">View Course</a>
                </div>
            </div>'''
        html_output += '</div>'
        return html_output
    else:
        return '<p class="no-results">No results found. Please try a different query.</p>'

# Custom CSS for the Gradio interface
custom_css = """
body { font-family: Arial, sans-serif; background-color: #f0f2f5; }
h1, h2, p, .container .examples { color: #333; }
.container { max-width: 800px; margin: 0 auto; padding: 20px; }
.results-container { display: flex; flex-wrap: wrap; justify-content: space-between; }
.course-card { background-color: white; border-radius: 8px; box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1); margin-bottom: 20px; overflow: hidden; width: 48%; transition: transform 0.2s; }
.course-card:hover { transform: translateY(-5px); }
.course-image { width: 100%; height: 150px; object-fit: cover; }
.course-info { padding: 15px; }
.course-info h3 { margin-top: 0; font-size: 18px; color: #333; }
.course-info p { color: #666; font-size: 14px; margin-bottom: 10px; }
.course-link { display: inline-block; background-color: #007bff; color: white; padding: 8px 12px; text-decoration: none; border-radius: 4px; font-size: 14px; transition: background-color 0.2s; }
.course-link:hover { background-color: #0056b3; }
.no-results { text-align: center; color: #666; font-style: italic; }
"""

# Gradio interface
iface = gr.Interface(
    fn=gradio_search,
    inputs=gr.Textbox(label="Enter your search query", placeholder="e.g., machine learning, data science, python"),
    outputs=gr.HTML(label="Search Results"),
    title="Analytics Vidhya Smart Course Search",
    description="Find the most relevant courses from Analytics Vidhya based on your query.",
    theme="huggingface",
    css=custom_css,
    examples=[
        ["machine learning for beginners"],
        ["advanced data visualization techniques"],
        ["python programming basics"], 
        ["Business Analytics"]
    ],
)

if __name__ == "__main__":
    iface.launch()