File size: 5,332 Bytes
e8af220 2bdf49a 6d78687 e8af220 6d78687 e8af220 6d78687 e8af220 6d78687 e8af220 6d78687 e8af220 6d78687 f9b0ae0 2bdf49a e8af220 2bdf49a e8af220 2bdf49a e8af220 2bdf49a e8af220 8ae7ecd e8af220 6d78687 2bdf49a 6d78687 8ae7ecd 6d78687 2bdf49a 6d78687 8ae7ecd 6d78687 2bdf49a 6d78687 2bdf49a 6d78687 8ae7ecd 6d78687 e8af220 3ba76f6 e8af220 883071c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
import requests
from bs4 import BeautifulSoup
import pandas as pd
import gradio as gr
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import creds # Assuming creds.py holds your API key as creds.api_key
# Step 1: Scrape the free courses from Analytics Vidhya
url = "https://courses.analyticsvidhya.com/pages/all-free-courses"
response = requests.get(url)
soup = BeautifulSoup(response.content, 'html.parser')
courses = []
# Extracting course title, image, and course link
for course_card in soup.find_all('header', class_='course-card__img-container'):
img_tag = course_card.find('img', class_='course-card__img')
if img_tag:
title = img_tag.get('alt')
image_url = img_tag.get('src')
link_tag = course_card.find_previous('a')
if link_tag:
course_link = link_tag.get('href')
if not course_link.startswith('http'):
course_link = 'https://courses.analyticsvidhya.com' + course_link
courses.append({
'title': title,
'image_url': image_url,
'course_link': course_link
})
# Step 2: Create DataFrame
df = pd.DataFrame(courses)
# Step 3: Text Processing for Improved Relevance
def preprocess_text(text):
text = text.lower()
text = text.replace("-", " ")
return text
df['processed_title'] = df['title'].apply(preprocess_text)
# Step 4: Generate TF-IDF Vectors for Titles
vectorizer = TfidfVectorizer(stop_words='english')
tfidf_matrix = vectorizer.fit_transform(df['processed_title'])
def search_courses(query):
# Process query and generate its TF-IDF vector
processed_query = preprocess_text(query)
query_vector = vectorizer.transform([processed_query])
# Calculate cosine similarity
similarities = cosine_similarity(query_vector, tfidf_matrix).flatten()
df['relevance_score'] = similarities
# Filter and sort courses based on relevance score
relevant_courses = df[df['relevance_score'] >= 0.3].sort_values(by='relevance_score', ascending=False)
results = []
for _, course in relevant_courses.iterrows():
results.append({
'title': course['title'],
'image_url': course['image_url'],
'course_link': course['course_link'],
'score': course['relevance_score']
})
return results[:10]
def gradio_search(query):
result_list = search_courses(query)
if result_list:
html_output = '<div class="results-container">'
for item in result_list:
course_title = item['title']
course_image = item['image_url']
course_link = item['course_link']
relevance_score = round(item['score'] * 100, 2)
html_output += f'''
<div class="course-card">
<img src="{course_image}" alt="{course_title}" class="course-image"/>
<div class="course-info">
<h3>{course_title}</h3>
<p>Relevance: {relevance_score}%</p>
<a href="{course_link}" target="_blank" class="course-link">View Course</a>
</div>
</div>'''
html_output += '</div>'
return html_output
else:
return '<p class="no-results">No results found. Please try a different query.</p>'
# Dark-themed CSS
custom_css = """
body {
font-family: Arial, sans-serif;
background-color: #121212;
color: #E0E0E0;
}
.container {
max-width: 800px;
margin: 0 auto;
padding: 20px;
color: #E0E0E0;
}
.results-container {
display: flex;
flex-wrap: wrap;
justify-content: space-between;
}
.course-card {
background-color: #1E1E1E;
border-radius: 8px;
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.5);
margin-bottom: 20px;
overflow: hidden;
width: 48%;
transition: transform 0.2s;
}
.course-card:hover {
transform: translateY(-5px);
}
.course-image {
width: 100%;
height: 150px;
object-fit: cover;
}
.course-info {
padding: 15px;
}
.course-info h3 {
margin-top: 0;
font-size: 18px;
color: #E0E0E0;
}
.course-info p {
color: #B0B0B0;
font-size: 14px;
margin-bottom: 10px;
}
.course-link {
display: inline-block;
background-color: #007bff;
color: white;
padding: 8px 12px;
text-decoration: none;
border-radius: 4px;
font-size: 14px;
transition: background-color 0.2s;
}
.course-link:hover {
background-color: #0056b3;
}
.no-results {
text-align: center;
color: #B0B0B0;
font-style: italic;
}
"""
# Gradio interface
iface = gr.Interface(
fn=gradio_search,
inputs=gr.Textbox(label="Enter your search query", placeholder="e.g., machine learning, data science, python"),
outputs=gr.HTML(label="Search Results"),
title="Analytics Vidhya Smart Course Search",
description="Find the most relevant courses from Analytics Vidhya based on your query.",
theme="huggingface",
css=custom_css,
examples=[
["machine learning for beginners"],
["advanced data visualization techniques"],
["python programming basics"],
["Business Analytics"]
],
)
if __name__ == "__main__":
iface.launch() |