File size: 5,332 Bytes
e8af220
 
 
 
2bdf49a
 
6d78687
e8af220
6d78687
 
 
 
e8af220
6d78687
e8af220
6d78687
 
 
 
 
 
 
 
 
 
 
 
 
e8af220
6d78687
 
 
 
 
e8af220
6d78687
 
f9b0ae0
2bdf49a
 
 
 
 
e8af220
2bdf49a
e8af220
2bdf49a
 
 
e8af220
2bdf49a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8af220
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ae7ecd
e8af220
6d78687
 
2bdf49a
 
6d78687
 
 
 
 
8ae7ecd
6d78687
 
 
 
 
 
 
2bdf49a
6d78687
8ae7ecd
6d78687
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bdf49a
6d78687
 
2bdf49a
6d78687
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ae7ecd
6d78687
 
e8af220
 
 
 
 
 
 
 
 
 
 
 
3ba76f6
 
 
 
e8af220
 
 
 
883071c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import requests
from bs4 import BeautifulSoup
import pandas as pd
import gradio as gr
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import creds  # Assuming creds.py holds your API key as creds.api_key

# Step 1: Scrape the free courses from Analytics Vidhya
url = "https://courses.analyticsvidhya.com/pages/all-free-courses"
response = requests.get(url)
soup = BeautifulSoup(response.content, 'html.parser')

courses = []

# Extracting course title, image, and course link
for course_card in soup.find_all('header', class_='course-card__img-container'):
    img_tag = course_card.find('img', class_='course-card__img')
    
    if img_tag:
        title = img_tag.get('alt')
        image_url = img_tag.get('src')
        
        link_tag = course_card.find_previous('a')
        if link_tag:
            course_link = link_tag.get('href')
            if not course_link.startswith('http'):
                course_link = 'https://courses.analyticsvidhya.com' + course_link

            courses.append({
                'title': title,
                'image_url': image_url,
                'course_link': course_link
            })

# Step 2: Create DataFrame
df = pd.DataFrame(courses)

# Step 3: Text Processing for Improved Relevance
def preprocess_text(text):
    text = text.lower()
    text = text.replace("-", " ")
    return text

df['processed_title'] = df['title'].apply(preprocess_text)

# Step 4: Generate TF-IDF Vectors for Titles
vectorizer = TfidfVectorizer(stop_words='english')
tfidf_matrix = vectorizer.fit_transform(df['processed_title'])

def search_courses(query):
    # Process query and generate its TF-IDF vector
    processed_query = preprocess_text(query)
    query_vector = vectorizer.transform([processed_query])
    
    # Calculate cosine similarity
    similarities = cosine_similarity(query_vector, tfidf_matrix).flatten()
    df['relevance_score'] = similarities
    
    # Filter and sort courses based on relevance score
    relevant_courses = df[df['relevance_score'] >= 0.3].sort_values(by='relevance_score', ascending=False)
    results = []
    
    for _, course in relevant_courses.iterrows():
        results.append({
            'title': course['title'],
            'image_url': course['image_url'],
            'course_link': course['course_link'],
            'score': course['relevance_score']
        })
    
    return results[:10]

def gradio_search(query):
    result_list = search_courses(query)
    
    if result_list:
        html_output = '<div class="results-container">'
        for item in result_list:
            course_title = item['title']
            course_image = item['image_url']
            course_link = item['course_link']
            relevance_score = round(item['score'] * 100, 2)
            
            html_output += f'''
            <div class="course-card">
                <img src="{course_image}" alt="{course_title}" class="course-image"/>
                <div class="course-info">
                    <h3>{course_title}</h3>
                    <p>Relevance: {relevance_score}%</p>
                    <a href="{course_link}" target="_blank" class="course-link">View Course</a>
                </div>
            </div>'''
        html_output += '</div>'
        return html_output
    else:
        return '<p class="no-results">No results found. Please try a different query.</p>'

# Dark-themed CSS
custom_css = """
body {
    font-family: Arial, sans-serif;
    background-color: #121212;
    color: #E0E0E0;
}
.container {
    max-width: 800px;
    margin: 0 auto;
    padding: 20px;
    color: #E0E0E0;
}
.results-container {
    display: flex;
    flex-wrap: wrap;
    justify-content: space-between;
}
.course-card {
    background-color: #1E1E1E;
    border-radius: 8px;
    box-shadow: 0 2px 4px rgba(0, 0, 0, 0.5);
    margin-bottom: 20px;
    overflow: hidden;
    width: 48%;
    transition: transform 0.2s;
}
.course-card:hover {
    transform: translateY(-5px);
}
.course-image {
    width: 100%;
    height: 150px;
    object-fit: cover;
}
.course-info {
    padding: 15px;
}
.course-info h3 {
    margin-top: 0;
    font-size: 18px;
    color: #E0E0E0;
}
.course-info p {
    color: #B0B0B0;
    font-size: 14px;
    margin-bottom: 10px;
}
.course-link {
    display: inline-block;
    background-color: #007bff;
    color: white;
    padding: 8px 12px;
    text-decoration: none;
    border-radius: 4px;
    font-size: 14px;
    transition: background-color 0.2s;
}
.course-link:hover {
    background-color: #0056b3;
}
.no-results {
    text-align: center;
    color: #B0B0B0;
    font-style: italic;
}
"""

# Gradio interface
iface = gr.Interface(
    fn=gradio_search,
    inputs=gr.Textbox(label="Enter your search query", placeholder="e.g., machine learning, data science, python"),
    outputs=gr.HTML(label="Search Results"),
    title="Analytics Vidhya Smart Course Search",
    description="Find the most relevant courses from Analytics Vidhya based on your query.",
    theme="huggingface",
    css=custom_css,
    examples=[
        ["machine learning for beginners"],
        ["advanced data visualization techniques"],
        ["python programming basics"], 
        ["Business Analytics"]
    ],
)

if __name__ == "__main__":
    iface.launch()