Spaces:
Runtime error
Runtime error
import os | |
import torch | |
from fastapi import FastAPI, HTTPException | |
from pydantic import BaseModel, Field | |
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig, BitsAndBytesConfig | |
# Set a writable cache directory | |
os.environ["HF_HOME"] = "/tmp/huggingface" | |
os.environ["TRANSFORMERS_CACHE"] = "/tmp/huggingface" | |
# Model setup | |
MODEL_NAME = "google/gemma-2b" # Smaller, CPU-friendly model | |
DEVICE = "cpu" | |
# 4-bit Quantization for CPU | |
quantization_config = BitsAndBytesConfig( | |
load_in_4bit=True, | |
bnb_4bit_compute_dtype=torch.float16, | |
bnb_4bit_use_double_quant=True | |
) | |
# Load model & tokenizer | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) | |
model = AutoModelForCausalLM.from_pretrained( | |
MODEL_NAME, | |
quantization_config=quantization_config, | |
device_map="cpu" | |
) | |
# Set generation config | |
model.generation_config = GenerationConfig.from_pretrained(MODEL_NAME) | |
model.generation_config.pad_token_id = model.generation_config.eos_token_id | |
# FastAPI app | |
app = FastAPI() | |
# Request payload | |
class TextGenerationRequest(BaseModel): | |
prompt: str | |
max_tokens: int = Field(default=100, ge=1, le=512) # Prevent too large token requests | |
async def generate_text(request: TextGenerationRequest): | |
try: | |
inputs = tokenizer(request.prompt, return_tensors="pt").to(DEVICE) | |
outputs = model.generate(**inputs, max_new_tokens=request.max_tokens, do_sample=True) | |
result = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return {"generated_text": result} | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=str(e)) | |