Spaces:
Runtime error
Runtime error
Commit
·
98db4b3
1
Parent(s):
c2d0dc7
fixing app.py
Browse files
app.py
CHANGED
@@ -1,34 +1,35 @@
|
|
1 |
import os
|
2 |
import torch
|
3 |
from fastapi import FastAPI, HTTPException
|
4 |
-
from pydantic import BaseModel
|
5 |
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig, BitsAndBytesConfig
|
6 |
|
7 |
-
# Set cache directory
|
8 |
os.environ["HF_HOME"] = "/tmp/huggingface"
|
9 |
os.environ["TRANSFORMERS_CACHE"] = "/tmp/huggingface"
|
10 |
|
11 |
# Model setup
|
12 |
-
MODEL_NAME = "
|
13 |
-
DEVICE = "
|
14 |
|
15 |
-
#
|
16 |
-
|
17 |
-
load_in_4bit=True,
|
18 |
bnb_4bit_compute_dtype=torch.float16,
|
19 |
-
bnb_4bit_use_double_quant=True
|
20 |
)
|
21 |
|
|
|
22 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
23 |
model = AutoModelForCausalLM.from_pretrained(
|
24 |
-
MODEL_NAME,
|
25 |
-
quantization_config=
|
26 |
-
device_map="
|
27 |
-
attn_implementation="flash_attention_2" # Enables Flash Attention
|
28 |
)
|
29 |
|
30 |
-
#
|
31 |
-
model =
|
|
|
32 |
|
33 |
# FastAPI app
|
34 |
app = FastAPI()
|
@@ -36,27 +37,14 @@ app = FastAPI()
|
|
36 |
# Request payload
|
37 |
class TextGenerationRequest(BaseModel):
|
38 |
prompt: str
|
39 |
-
max_tokens: int = 512 #
|
40 |
|
41 |
@app.post("/generate")
|
42 |
async def generate_text(request: TextGenerationRequest):
|
43 |
try:
|
44 |
-
inputs = tokenizer(request.prompt, return_tensors="pt"
|
45 |
-
|
46 |
-
with torch.no_grad():
|
47 |
-
outputs = model.generate(
|
48 |
-
**inputs,
|
49 |
-
max_new_tokens=request.max_tokens,
|
50 |
-
do_sample=True,
|
51 |
-
temperature=0.7,
|
52 |
-
top_k=50,
|
53 |
-
top_p=0.9,
|
54 |
-
repetition_penalty=1.05,
|
55 |
-
use_cache=True,
|
56 |
-
)
|
57 |
-
|
58 |
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
59 |
return {"generated_text": result}
|
60 |
-
|
61 |
except Exception as e:
|
62 |
raise HTTPException(status_code=500, detail=str(e))
|
|
|
1 |
import os
|
2 |
import torch
|
3 |
from fastapi import FastAPI, HTTPException
|
4 |
+
from pydantic import BaseModel, Field
|
5 |
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig, BitsAndBytesConfig
|
6 |
|
7 |
+
# Set a writable cache directory
|
8 |
os.environ["HF_HOME"] = "/tmp/huggingface"
|
9 |
os.environ["TRANSFORMERS_CACHE"] = "/tmp/huggingface"
|
10 |
|
11 |
# Model setup
|
12 |
+
MODEL_NAME = "google/gemma-2b" # Smaller, CPU-friendly model
|
13 |
+
DEVICE = "cpu"
|
14 |
|
15 |
+
# 4-bit Quantization for CPU
|
16 |
+
quantization_config = BitsAndBytesConfig(
|
17 |
+
load_in_4bit=True,
|
18 |
bnb_4bit_compute_dtype=torch.float16,
|
19 |
+
bnb_4bit_use_double_quant=True
|
20 |
)
|
21 |
|
22 |
+
# Load model & tokenizer
|
23 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
24 |
model = AutoModelForCausalLM.from_pretrained(
|
25 |
+
MODEL_NAME,
|
26 |
+
quantization_config=quantization_config,
|
27 |
+
device_map="cpu"
|
|
|
28 |
)
|
29 |
|
30 |
+
# Set generation config
|
31 |
+
model.generation_config = GenerationConfig.from_pretrained(MODEL_NAME)
|
32 |
+
model.generation_config.pad_token_id = model.generation_config.eos_token_id
|
33 |
|
34 |
# FastAPI app
|
35 |
app = FastAPI()
|
|
|
37 |
# Request payload
|
38 |
class TextGenerationRequest(BaseModel):
|
39 |
prompt: str
|
40 |
+
max_tokens: int = Field(default=100, ge=1, le=512) # Prevent too large token requests
|
41 |
|
42 |
@app.post("/generate")
|
43 |
async def generate_text(request: TextGenerationRequest):
|
44 |
try:
|
45 |
+
inputs = tokenizer(request.prompt, return_tensors="pt").to(DEVICE)
|
46 |
+
outputs = model.generate(**inputs, max_new_tokens=request.max_tokens, do_sample=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
48 |
return {"generated_text": result}
|
|
|
49 |
except Exception as e:
|
50 |
raise HTTPException(status_code=500, detail=str(e))
|