File size: 1,640 Bytes
0512849
102a3b0
 
98db4b3
c2d0dc7
102a3b0
98db4b3
59e3ffd
 
 
102a3b0
98db4b3
 
102a3b0
98db4b3
 
 
c2d0dc7
98db4b3
c2d0dc7
 
98db4b3
102a3b0
 
98db4b3
 
 
102a3b0
59e3ffd
98db4b3
 
 
102a3b0
 
 
 
 
 
 
98db4b3
102a3b0
 
 
 
98db4b3
 
c2d0dc7
102a3b0
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import os
import torch
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel, Field
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig, BitsAndBytesConfig

# Set a writable cache directory
os.environ["HF_HOME"] = "/tmp/huggingface"
os.environ["TRANSFORMERS_CACHE"] = "/tmp/huggingface"

# Model setup
MODEL_NAME = "google/gemma-2b"  # Smaller, CPU-friendly model
DEVICE = "cpu"

# 4-bit Quantization for CPU
quantization_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_compute_dtype=torch.float16,
    bnb_4bit_use_double_quant=True
)

# Load model & tokenizer
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForCausalLM.from_pretrained(
    MODEL_NAME, 
    quantization_config=quantization_config,
    device_map="cpu"
)

# Set generation config
model.generation_config = GenerationConfig.from_pretrained(MODEL_NAME)
model.generation_config.pad_token_id = model.generation_config.eos_token_id

# FastAPI app
app = FastAPI()

# Request payload
class TextGenerationRequest(BaseModel):
    prompt: str
    max_tokens: int = Field(default=100, ge=1, le=512)  # Prevent too large token requests

@app.post("/generate")
async def generate_text(request: TextGenerationRequest):
    try:
        inputs = tokenizer(request.prompt, return_tensors="pt").to(DEVICE)
        outputs = model.generate(**inputs, max_new_tokens=request.max_tokens, do_sample=True)
        result = tokenizer.decode(outputs[0], skip_special_tokens=True)
        return {"generated_text": result}
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))