File size: 5,793 Bytes
7e738ef
78a7c54
f9c5a74
 
 
 
 
 
f42f33d
 
78a7c54
 
 
 
 
 
 
 
 
 
 
 
 
f9c5a74
 
 
 
 
 
 
 
 
 
f42f33d
f9c5a74
f21b6d3
2f43f91
f9c5a74
 
f21b6d3
f9c5a74
 
f21b6d3
f9c5a74
 
 
 
f21b6d3
f9c5a74
 
 
 
f21b6d3
f9c5a74
 
 
 
 
 
 
 
 
 
 
 
 
 
f21b6d3
f9c5a74
 
 
 
 
 
 
 
 
 
 
f21b6d3
f9c5a74
 
 
 
 
 
 
 
 
 
f21b6d3
 
 
 
 
 
 
2f43f91
f21b6d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f43f91
 
f21b6d3
 
 
2f43f91
f21b6d3
2f43f91
 
 
 
 
 
 
 
 
 
 
f21b6d3
2f43f91
 
 
f21b6d3
 
 
 
 
 
 
 
 
 
 
2f43f91
f21b6d3
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import spaces
import os
import gradio as gr
from pdf2image import convert_from_path
from byaldi import RAGMultiModalModel
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info
import torch
import torchvision
import subprocess

# Run the commands from setup.sh to install poppler-utils
def install_poppler():
    try:
        subprocess.run(["pdfinfo"], check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
    except FileNotFoundError:
        print("Poppler not found. Installing...")
        # Run the setup commands
        subprocess.run("apt-get update", shell=True)
        subprocess.run("apt-get install -y poppler-utils", shell=True)

# Call the Poppler installation check
install_poppler()

# Install flash-attn if not already installed
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)

# Load the RAG Model and the Qwen2-VL-2B-Instruct model
RAG = RAGMultiModalModel.from_pretrained("vidore/colpali")
model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct",
                                                        trust_remote_code=True, torch_dtype=torch.bfloat16).cuda().eval()
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True)

@spaces.GPU()
def process_pdf_and_query(pdf_file, user_query):
    # Convert the PDF to images
    images = convert_from_path(pdf_file.name)  
    num_images = len(images)

    # Indexing the PDF in RAG
    RAG.index(
        input_path=pdf_file.name,
        index_name="image_index",  # index will be saved at index_root/index_name/
        store_collection_with_index=False,
        overwrite=True
    )

    # Search the query in the RAG model
    results = RAG.search(user_query, k=1)
    if not results:
        return "No results found.", num_images

    # Retrieve the page number and process image
    image_index = results[0]["page_num"] - 1
    messages = [
        {
            "role": "user",
            "content": [
                {
                    "type": "image",
                    "image": images[image_index],
                },
                {"type": "text", "text": user_query},
            ],
        }
    ]

    # Generate text with the Qwen model
    text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    image_inputs, video_inputs = process_vision_info(messages)
    inputs = processor(
        text=[text],
        images=image_inputs,
        videos=video_inputs,
        padding=True,
        return_tensors="pt",
    )
    inputs = inputs.to("cuda")
    
    # Generate the output response
    generated_ids = model.generate(**inputs, max_new_tokens=50)
    generated_ids_trimmed = [
        out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
    ]
    output_text = processor.batch_decode(
        generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
    )

    return output_text[0], num_images


pdf_input = gr.File(label="Upload PDF") 
query_input = gr.Textbox(label="Enter your query", placeholder="Ask a question about the PDF")  
output_text = gr.Textbox(label="Model Answer")  
output_images = gr.Textbox(label="Number of Images in PDF")  

# CSS styling
css = """
body {
    background-color: #282a36;
    font-family: Arial, sans-serif;
    color: #f8f8f2;
}
h1 {
    text-align: center;
    font-size: 2.5em;
    font-weight: bold;
    margin-bottom: 20px;
}
footer {
    margin-top: 20px;
}
.duplicate-button {
    text-align: center;
    background-color: #50fa7b;
    color: #282a36;
    font-weight: bold;
    border: none;
    padding: 10px;
    cursor: pointer;
}
"""

description = """
### About Multimodal RAG
Multimodal Retrieval-Augmented Generation (RAG) integrates both images and text to provide more comprehensive and contextually accurate responses to user queries. It uses a retriever model like **ColPali** to search and retrieve relevant data and a large language model (LLM) like **Qwen/Qwen2-VL-2B-Instruct** to generate natural language answers based on the input.

In this demo, **ColPali** is used as a multimodal retriever, and the **Byaldi** library from answer.ai simplifies the use of ColPali. We are utilizing **Qwen2-VL-2B-Instruct** for text generation, enabling both text and image-based queries.
"""

footer = """
<div style="text-align: center; margin-top: 20px;">
    <a href="https://www.linkedin.com/in/pejman-ebrahimi-4a60151a7/" target="_blank">LinkedIn</a> |
    <a href="https://github.com/arad1367" target="_blank">GitHub</a> |
    <a href="https://arad1367.pythonanywhere.com/" target="_blank">Live demo of my PhD defense</a> |
    <a href="https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct" target="_blank">Qwen/Qwen2-VL-2B-Instruct</a> |
    <a href="https://github.com/AnswerDotAI/byaldi" target="_blank">Byaldi</a> |
    <a href="https://github.com/illuin-tech/colpali" target="_blank">ColPali</a>
    <br>
    Made with πŸ’– by <a href="https://github.com/arad1367" target="_blank">Pejman Ebrahimi</a>
</div>
"""

# Gradio Interface 
with gr.Blocks(theme='freddyaboulton/dracula_revamped', css=css) as demo:
    gr.Markdown("<h1>Multimodal RAG with Image Query</h1>")
    gr.Markdown(description)
    with gr.Row():
        pdf_input = gr.File(label="Upload PDF")
        query_input = gr.Textbox(label="Enter your query", placeholder="Ask a question about the PDF")
    output_text = gr.Textbox(label="Model Answer")
    output_images = gr.Textbox(label="Number of Images in PDF")
    
    gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
    gr.HTML(footer)

    demo.launch(debug=True)