Spaces:
Runtime error
Runtime error
File size: 5,793 Bytes
7e738ef 78a7c54 f9c5a74 f42f33d 78a7c54 f9c5a74 f42f33d f9c5a74 f21b6d3 2f43f91 f9c5a74 f21b6d3 f9c5a74 f21b6d3 f9c5a74 f21b6d3 f9c5a74 f21b6d3 f9c5a74 f21b6d3 f9c5a74 f21b6d3 f9c5a74 f21b6d3 2f43f91 f21b6d3 2f43f91 f21b6d3 2f43f91 f21b6d3 2f43f91 f21b6d3 2f43f91 f21b6d3 2f43f91 f21b6d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
import spaces
import os
import gradio as gr
from pdf2image import convert_from_path
from byaldi import RAGMultiModalModel
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info
import torch
import torchvision
import subprocess
# Run the commands from setup.sh to install poppler-utils
def install_poppler():
try:
subprocess.run(["pdfinfo"], check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
except FileNotFoundError:
print("Poppler not found. Installing...")
# Run the setup commands
subprocess.run("apt-get update", shell=True)
subprocess.run("apt-get install -y poppler-utils", shell=True)
# Call the Poppler installation check
install_poppler()
# Install flash-attn if not already installed
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
# Load the RAG Model and the Qwen2-VL-2B-Instruct model
RAG = RAGMultiModalModel.from_pretrained("vidore/colpali")
model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct",
trust_remote_code=True, torch_dtype=torch.bfloat16).cuda().eval()
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True)
@spaces.GPU()
def process_pdf_and_query(pdf_file, user_query):
# Convert the PDF to images
images = convert_from_path(pdf_file.name)
num_images = len(images)
# Indexing the PDF in RAG
RAG.index(
input_path=pdf_file.name,
index_name="image_index", # index will be saved at index_root/index_name/
store_collection_with_index=False,
overwrite=True
)
# Search the query in the RAG model
results = RAG.search(user_query, k=1)
if not results:
return "No results found.", num_images
# Retrieve the page number and process image
image_index = results[0]["page_num"] - 1
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": images[image_index],
},
{"type": "text", "text": user_query},
],
}
]
# Generate text with the Qwen model
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
# Generate the output response
generated_ids = model.generate(**inputs, max_new_tokens=50)
generated_ids_trimmed = [
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
return output_text[0], num_images
pdf_input = gr.File(label="Upload PDF")
query_input = gr.Textbox(label="Enter your query", placeholder="Ask a question about the PDF")
output_text = gr.Textbox(label="Model Answer")
output_images = gr.Textbox(label="Number of Images in PDF")
# CSS styling
css = """
body {
background-color: #282a36;
font-family: Arial, sans-serif;
color: #f8f8f2;
}
h1 {
text-align: center;
font-size: 2.5em;
font-weight: bold;
margin-bottom: 20px;
}
footer {
margin-top: 20px;
}
.duplicate-button {
text-align: center;
background-color: #50fa7b;
color: #282a36;
font-weight: bold;
border: none;
padding: 10px;
cursor: pointer;
}
"""
description = """
### About Multimodal RAG
Multimodal Retrieval-Augmented Generation (RAG) integrates both images and text to provide more comprehensive and contextually accurate responses to user queries. It uses a retriever model like **ColPali** to search and retrieve relevant data and a large language model (LLM) like **Qwen/Qwen2-VL-2B-Instruct** to generate natural language answers based on the input.
In this demo, **ColPali** is used as a multimodal retriever, and the **Byaldi** library from answer.ai simplifies the use of ColPali. We are utilizing **Qwen2-VL-2B-Instruct** for text generation, enabling both text and image-based queries.
"""
footer = """
<div style="text-align: center; margin-top: 20px;">
<a href="https://www.linkedin.com/in/pejman-ebrahimi-4a60151a7/" target="_blank">LinkedIn</a> |
<a href="https://github.com/arad1367" target="_blank">GitHub</a> |
<a href="https://arad1367.pythonanywhere.com/" target="_blank">Live demo of my PhD defense</a> |
<a href="https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct" target="_blank">Qwen/Qwen2-VL-2B-Instruct</a> |
<a href="https://github.com/AnswerDotAI/byaldi" target="_blank">Byaldi</a> |
<a href="https://github.com/illuin-tech/colpali" target="_blank">ColPali</a>
<br>
Made with π by <a href="https://github.com/arad1367" target="_blank">Pejman Ebrahimi</a>
</div>
"""
# Gradio Interface
with gr.Blocks(theme='freddyaboulton/dracula_revamped', css=css) as demo:
gr.Markdown("<h1>Multimodal RAG with Image Query</h1>")
gr.Markdown(description)
with gr.Row():
pdf_input = gr.File(label="Upload PDF")
query_input = gr.Textbox(label="Enter your query", placeholder="Ask a question about the PDF")
output_text = gr.Textbox(label="Model Answer")
output_images = gr.Textbox(label="Number of Images in PDF")
gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
gr.HTML(footer)
demo.launch(debug=True)
|